Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Требования к уровню усвоения знаний выпускников.






В результате изучения математики ученик должен:

знать/понимать

существо понятия математического доказательства; приводить примеры

доказательств; существо понятия алгоритма; приводить примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания; как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов; каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики; смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

Арифметика

уметь

выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем; переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки; выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений; округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот; решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера; устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов; интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

уметь

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные; выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений; применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни; решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы; решать линейные и квадратные неравенства с одной переменной и их системы, решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи; изображать числа точками на координатной прямой; определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства; распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов; находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей; определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств; описывать свойства изученных функций, строить их графики; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах; моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры; описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций; интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений; извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики; решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения; вычислять средние значения результатов измерений; находить частоту события, используя собственные наблюдения и готовые статистические данные; находить вероятности случайных событий в простейших случаях; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выстраивания аргументации при доказательстве и в диалоге; распознавания логически некорректных рассуждений; записи математических утверждений, доказательств; анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц; решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости; решения учебных и практических задач, требующих систематического перебора вариантов; сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией; понимания статистических утверждений.

Геометрия.

Уметь:

пользоваться геометрическим языком для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение; изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур; распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами; вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них; решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии; проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи в пространстве.

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии; расчётов, включающих простейшие тригонометрические формулы; решения геометрических задач с использованием тригонометрии; решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

 

Содержание учебного предмета.

Арифметика (240 ч)

Натуральные числа. Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выражениях, использование ско­бок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m\n, где

m — целое число, n — натуральное число. Сравнение рацио­нальных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с це­лым показателем.

Действительные числа. Квадратный корень из числа. Ко­рень третьей степени.

Понятие об иррациональном числе. Иррациональность числа √ 2 и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконечных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение мно­жителя — степени 10 — в записи числа.

Приближенное значение величины, точность приближе­ния. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

 

Алгебра(200 ч)

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и многочлены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­жения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраи­ческих дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выра­жений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемен­ными; решение подстановкой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравнения с двумя переменными. График линейно­го уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность нера­венств. Линейные неравенства с одной переменной. Квадрат­ные неравенства. Системы неравенств с одной переменной.

 

Функции (65 ч)

Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции. Область определения и множество значений функции. Спосо­бы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у =√ х, у = 3√ x, у = |х|.

Числовые последовательности. Понятие числовой по­следовательности. Задание последовательности рекуррентной формулой и формулой /7-го члена.

Арифметическая и геометрическая прогрессии. Формулы «-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

 

Вероятность и статистика (39ч)

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наибольшее и наименьшее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о слу­чайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определение вероятности.

Комбинаторика. Решение комбинаторных задач перебо­ром вариантов. Комбинаторное правило умножения. Переста­новки и факториал.

 

Геометрия (241ч)

Наглядная геометрия. Наглядные представления о фигу­рах на плоскости: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измерение длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь ьсвадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры се­чений. Многогранники. Правильные многогранники. Приме­ры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Теоремы о параллельности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольни­ки; свойства и признаки равнобедренного треугольника. Приз­наки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сум­ма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и те­орема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построе­ние с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

 

Логика и множества (10 ч)

Теоретико-множественные понятия. Множество, эле­мент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. До­казательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если..., то в том и только в том слу­чае, логические связки и, или.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.012 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал