![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Краткие теоретические сведения и основные формулы. Учебная цель: добиться понимания физической сущности явления дифракцииСтр 1 из 12Следующая ⇒
ДИФРАКЦИЯ СВЕТА Учебная цель: добиться понимания физической сущности явления дифракции. Научиться определять относительное распределение освещенности на экране в зависимости от размеров и формы неоднородностей, вызывающих дифракцию. Литература
Основная: Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высшая школа, 1989. - Гл. 32, § 32.1 - 32.4. Дополнительная: Савельев И.В. Курс общей физики. - М.: Наука, 1987. - Т. 2. - гл. 18, § 125 - 130.
Контрольные вопросы для подготовки к занятию
1. Дайте определение явления дифракции. При каких размерах препятствий можно наблюдать дифракционную картину? 2. Поясните принцип Гюйгенса и дополнение Френеля к принципу Гюйгенса. 3. Каков результат наложения вторичных когерентных волн? При каком условии получится усиление интенсивности света в данной точке? А при каком - ослабление света? 4. Как зависит интенсивность света от амплитуды интерферирующих волн? 5. Поясните метод зон Френеля: - как строятся зоны Френеля? - от чего зависит величина амплитуды волны, приходящей в данную точку экрана от одной из зон? - зачем необходимо, чтобы радиусы соседних зон отличались на - запишите суммарную амплитуду волны, если их т? - сколько зон должно укладываться в препятствии, чтобы наблюдался максимум интенсивности света? 6. Дифракция на круглом отверстии: - запишите и поясните выражение для амплитуды результирующего колебания в точке; - при каком числе зон в данной точке будет наблюдаться максимум интерференции света? А при каком – минимум интерференции света? - поясните дифракционную картину от круглого отверстия вблизи точки M (рис. 26.1). 7. В чем особенность построения зон Френеля при рассмотрении дифракции на диске? 8. Дифракция Фраунгофера на одной щели: - когда наблюдается дифракция Фраунгофера? - как строятся зоны Френеля? - от чего зависит число зон Френеля? - запишите и поясните условие дифракционного минимума (полная темнота) и условие дифракционного максимума. 9. Дифракция Фраунгофера на дифракционной решетке: - напишите и поясните выражение разности хода лучей, идущих от двух соседних щелей; - запишите и поясните условия: главного и дополнительных минимумов; главного максимума; - как изменится распределение интенсивности в дифракционной картине при увеличении числа щелей?
Краткие теоретические сведения и основные формулы
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или, в более широком смысле, – любое отклонение волн от законов геометрической оптики. Явление дифракции объясняется с помощью принципа Гюйгенса - Френеля, согласно которому каждая точка фронта волны может рассматриваться как источник вторичных сферических волн; вторичные волны когерентны и при наложении интерферируют. Исходя из принципа Гюйгенса - Френеля, легко получить закон прямолинейного распространения света в свободной от препятствий однородной среде. Путь
Френель разбил волновую поверхность S на кольцевые зоны (см. рис. 26.1) такого размера, чтобы расстояния от краев зоны до точки М отличались на
Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол
Учитывая оба эти фактора, можем записать
Общее число зон Френеля, умещающихся на полусфере, очень велико:
Если R = L = 0, 1 м и l = 5 . 10-7 м, то N» 3 . 105. Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания Ат от некоторой т -й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.
Тогда выражение (26.1) можно записать в виде
так как по формуле (26.2) выражения, стоящие в скобках, равны нулю, а оставшаяся часть от амплитуды последней зоны Таким образом, амплитуда, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной, радиус
|