Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Править] ИсторияСтр 1 из 9Следующая ⇒
Формула Эйлера ln(cos x + i sin x)=ix У этого термина существуют и другие значения, см. Список объектов, названных в честь Леонарда Эйлера#Формулы. Геометрический смысл формулы Эйлера Формула Эйлера названа в честь Леонарда Эйлера, который её ввёл, и связывает комплексную экспоненту с тригонометрическими функциями. Формула Эйлера утверждает, что для любого вещественного числа x выполнено следующее равенство: , где e — основание натурального логарифма, i — мнимая единица.
править] История Формула Эйлера впервые была приведена в книге «Гармония мер» английского математика Роджера Котса (помощника Ньютона), которая была издана в 1722 году, уже после смерти автора. Котс открыл формулу около 1714 года и выразил её в логарифмической форме: . Эйлер опубликовал формулу в её привычном виде в статье 1740 года и в книге «Введение в анализ бесконечно малых» (1748), построив доказательство на равенстве бесконечных разложений в степенные ряды правой и левой частей. Ни Эйлер, ни Котс не представляли себе геометрической интерпретации формулы: представление о комплексных числах как точках на комплексной плоскости появилось примерно 50 лет спустя (см. Г. Вессель).
|