Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Edit] Using calculus ⇐ ПредыдущаяСтр 9 из 9
Another proof [7] is based on the fact that all complex numbers can be expressed in polar coordinates. Therefore for some r and θ depending on x, Now from any of the definitions of the exponential function it can be shown that the derivative of eix is ieix. Therefore differentiating both sides gives Substituting r (cos(θ) + i sin(θ)) for eix and equating real and imaginary parts in this formula gives and . Together with the initial values r (0) = 1 and θ (0) = 0 which come from ei 0 = 1 this gives r = 1 and θ = x. This proves the formula eix = 1(cos(x) + i sin(x)). Edit] See also · Euler's identity · Complex number · Integration using Euler's formula · List of topics named after Leonhard Euler Edit] References Moskowitz, Martin A. (2002). A Course in Complex Analysis in One Variable. World Scientific Publishing Co.. pp. 7. ISBN 981-02-4780-X. 2. ^ Feynman, Richard P. (1977). The Feynman Lectures on Physics, vol. I. Addison-Wesley. pp. 22-1, 22-10. ISBN0-201-02010-6. Johann Bernoulli, Solution d'un problè me concernant le calcul inté gral, avec quelques abré gé s par rapport à ce calcul, Mé moires de l'Acadé mie Royale des Sciences de Paris, 197-289 (1702). 4. ^ John Stillwell (2002). Mathematics and Its History. Springer. https://books.google.com/books? id=V7mxZqjs5yUC& pg=PA315. 5. ^A Modern Introduction to Differential Equations, by Henry J. Ricardo, p428 6. ^ ab Ordinary differential equations, by Vladimir Igorevich Arnolʹ d, p166 7. ^ Strang, Gilbert (1991). Calculus. Wellesley-Cambridge. p. 389. ISBN0-9614088-2-0. https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/. (Second proof on page)
|