Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Euler's formula
From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about Euler's formula in complex analysis. For Euler's formula in algebraic topology and polyhedral combinatorics see Euler characteristic.
Euler's formula, named after Leonhard Euler, is a mathematicalformula in complex analysis that establishes the deep relationship between the trigonometric functions and the complexexponential function. Euler's formula states that, for any real number x, where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively, with the argument x given in radians. This complex exponential function is sometimes denoted cis (x). The formula is still valid if x is a complex number, and so some authors refer to the more general complex version as Euler's formula. [1] Richard Feynman called Euler's formula " our jewel" and " one of the most remarkable, almost astounding, formulas in all of mathematics." [2]
|