Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Euler's formula






From Wikipedia, the free encyclopedia

Jump to: navigation, search

This article is about Euler's formula in complex analysis. For Euler's formula in algebraic topology and polyhedral combinatorics

see Euler characteristic.

Part of a series of articles on The mathematical constant e
Natural logarithm ·Exponential function
Applications in: compound interest · Euler's identity & Euler's formula · half-lives & exponential growth / decay
Defining e: proof that e is irrational · representations of e · Lindemann–Weierstrass theorem
People John Napier · Leonhard Euler
Schanuel's conjecture

 

Euler's formula, named after Leonhard Euler, is a mathematicalformula in complex analysis that establishes the deep relationship between the trigonometric functions and the complexexponential function. Euler's formula states that, for any real number x,

where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively, with the argument x given in radians. This complex exponential function is sometimes denoted cis (x). The formula is still valid if x is a complex number, and so some authors refer to the more general complex version as Euler's formula. [1]

Richard Feynman called Euler's formula " our jewel" and " one of the most remarkable, almost astounding, formulas in all of mathematics." [2]

Contents · 1 History · 2 Applications in complex number theory · 3 Relationship to trigonometry · 4 Other applications · 5 Definitions of complex exponentiation o 5.1 Power series definition o 5.2 Limit definition · 6 Proofs o 6.1 Using power series o 6.2 Using the limit definition o 6.3 Using calculus · 7 See also · 8 References · 9 External links

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал