Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Problem solving
Can you prove the following propositions and explain how you obtained the results? PROPOSITION 1. Suppose that T1: Rn→ Rm and T2: Rm→ Rk are linear transformations. Then T=T2 ○ T1: Rn→ Rk is also a linear transformation.
PROPOSITION 2. Suppose that the linear operator T: Rn→ Rn has standard matrix A. Then the following statements are equivalent: (a) The matrix A is invertible. (b) The linear operator T is one-to-one. (c) The range of T is Rn, in other words, R(T) =Rn.
PROPOSITION 3. A transformation T: Rn→ Rm is linear if and only if the following two conditions are satisfied: (a) For every u, v Rn, we have T(u+v) =T(u) +T(v). (b) For every u Rn, and c R, we have T(cu) =cT(u).
*Source: WWL Chen, Linear Algebra. Chapter 8 Linear Transformations 2008. https://rutherglen.science.mq.edu.au/wchen/lnlafolder/la08.pdf
Grammar Notes:
|