Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства изоморфных пространств.
1. Нулевому элементу V соответствует нулевой элемент и наоборот. Доказательство: Если . 2. Если элементам соответствуют , то линейная комбинация векторов равна нулю V, т.е. линейная комбинация с теми же коэффициентами равна нулю, т.е. . Доказательство следует из 1. 3. Если V и изоморфны, то максимальное число линейно независимых векторов в каждом из пространств одно и тоже, т.е. два изоморфных пространства имеют одну и туже размерность. 4. Пространства разных размерностей не могут быть изоморфными. Теорема 6. Любые два –мерных линейных пространства V и над одним и тем же полем изоморфны. Доказательство. Выберем в V базис − базис Каждому элементу , поставим в соответствие элемент с теми же координатами в базисе . Однако это соответствие взаимнооднозначно, т.к. имеет единственным образом определенные координаты , которые в свою очередь, определяют единственный элемент . В силу равноправности V и , соответствует единственный . Легко видеть, что если в силу введенного соответствия. Таким образомо все линейные пространства данной размерности –ная полем изоморфны, то есть их свойства, связанные с линейными операциями неразличимы.
Тема 5. Пространство геометрических векторов,
|