Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вектор потока тепла. Нетеплопроводная жидкость.
Получим формулу для потока тепла tn. Рассмотрим тетраэдр (рис. 1.30), три грани которого параллельны координатным плоскостям.
рис. 1.30 Введем те же обозначения, что и при выводе формулы Коши: Sx, Sy, Sz — площади граней, перпендикулярных осям координат; Sn: —площадь грани с нормалью n; h — высота тетраэдра, опущенная на грань S. Объем тетраэдра будет равен τ = ⅓ Sh.Запишем для этого тетраэдра закон сохранения энергии, применив к интегралам теорему о среднем (1.3.52) Здесь , , . Сократив все члены равенства (1) на S и устремив h к нулю, получим (1.3.53) Из физических соображений ясно, что tn=-t-n, где tn описывает поток энергии внутрь, а t-n – поток через площадку с нормалью (-n) – описывает поток изнутри. Введем величины tx, ty, tz. Получаем (1.3.54) Из формулы (1.3.54) следует, что совокупность (tx, ty, tz) образует вектор. В этом легко убедиться, если записать (1.3.54), выбирая последовательно в качестве n орты новой системы координат х', у, z'. Полученные формулы связи (tX', ty', tz′) и (tx, ty, tz) представляют собой известные формулы преобразования компонент вектора при переходе от одной системы координат к другой. Вектор t = txi + tyi + tzk (1.3.55) называют вектором потока тепла. Величина tn есть проекция этого вектора на n: tn= (t· n). Жидкость называется нетеплопроводной, если вектор потока тепла t равен нулю. Равенство t = 0 в проекциях на оси координат tx = ty = tz = 0. Схему нетеплопроводной жидкости используют в случае, когда явления теплопроводности оказывают малое влияние на физический процесс, и обычно принимают одновременно с предположением об идеальности жидкости. Если жидкость идеальная и нетеплопроводная, то уравнение энергии может быть упрощено. Для идеальной жидкости τ x = -ip, τ y = -jp, τ z = -kp и . Уравнение энергии для идеальной нетеплопроводной жидкости имеет вид .
|