Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Первый замечательный предел.






Предел отношения синуса к его аргументу равен единице, когда аргумент стремится к 0.

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности (R = 1).

Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1; 0). Точка H — проекция точки K на ось OX.

Очевидно, что:

(1)

(где SsectOKA — площадь сектора OKA)

(из : | LA | = tg x)

Подставляя в (1), получим:

Так как при :

Умножаем на sin x:

Перейдём к пределу:

Найдём левый односторонний предел:

12.Второй замечательный предел.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, т.е. докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n = [ x ] - это целая часть x.

Отсюда следует: , поэтому

.

Если , то . Поэтому, согласно пределу , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку − x = t, тогда

.

Из двух этих случаев вытекает, что для вещественного x.

 

Глава 3.

 

1. Производная геом и физ смысл.

 

Пусть функция определена в точке и некоторой ее окрестности. Придадим аргументу приращение такое, что точка попадает в область определения функции. Функция при этом получит приращение .

ОПРЕДЕЛЕНИЕ 1. Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента , при (если этот предел существует и конечен), т.е.

.

Обозначают:.

Производной функции в точке справа (слева) называется

(если этот предел существует и конечен).

Обозначают: – производная y=f(x) в точке справа,

– производная y=f(x) в точке слева.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал