Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Классификация методов численного интегрирования
Пусть рассматривается задача вычисления определенного интеграла вида
где Во многих случаях, когда подынтегральная функция задана в аналитическом виде, определенный интеграл удается вычислить непосредственно с помощью формулы Ньютона-Лейбница как приращение первообразной
где В реальных исследовательских задачах выразить интеграл через элементарные функции удается достаточно редко, а компактный и удобный для приведения к числу ответ получается еще реже. Поэтому на практике формулой Ньютона-Лейбница часто нельзя воспользоваться по двум основным причинам: 1. Вид функции 2. Подынтегральная функция В этих случаях используют приближенные, численные методы интегрирования. Назначение большинства приближенных методов вычисления определенных интегралов состоит в замене подынтегральной функции
где Чаще всего функцию
где Подставляя полученное выражение в определенный интеграл вместо подынтегральной функции, получим общую формулу численного интегрирования
где Пояснение. Интерполяция – приближенное вычисление неизвестных значений функции по известным ее значениям в заданных точках. Наиболее простым является линейное интерполирование, при котором допускается, что приращение функции пропорционально приращению аргумента. С целью уменьшения погрешности, связанной с заменой подынтегральной функции, отрезок интегрирования
Методы численного интегрирования можно классифицировать в зависимости от способа аппроксимации подынтегральной функции Методы Ньютона-Котеса основаны на полиномиальной аппроксимации подынтегральной функции. Методы данного класса отличаются друг от друга степенью используемого полинома, от которой зависит количество узлов, в которых необходимо вычислять функцию Сплайновые методы базируются на аппроксимации подынтегральной функции сплайнами и различаются по типу выбранных сплайнов. В данном учебно-методическом пособии эти методы рассматриваться не будут. Пояснение. Под сплайном обычно понимают функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения. Классический сплайн одной переменной строится следующим образом: область определения разбивается на конечное число отрезков, на каждом из которых сплайн совпадает с некоторым алгебраическим полиномом. Максимальная степень из использованных полиномов называется степенью сплайна. Математические сплайны берут свое начало от тонких гибких стержней, которыми пользовались чертежники для проведения плавных кривых через заданные точки. Стержень закреплялся в точках Методы наивысшей алгебраической точности (например, методы Гаусса и Маркова) основаны на использовании заданного количества неравноотстоящих узлов, расположенных так, чтобы обеспечить минимальную погрешность интегрирования для наиболее сложных функций. Методы различаются способом выбора узлов и широко используются для интегрирования, в том числе они применимы и для вычисления несобственных интегралов (см. разд. 4.6). По сравнению с методами Ньютона-Котеса, методы наивысшей алгебраической точности более громоздки и требуют больших объемов оперативной памяти ЭВМ, в данном учебно-методическом пособии эти методы рассматриваться не будут. В методах Монте-Карло узловые точки Независимо от выбранного метода, в процессе численного интегрирования необходимо вычислить приближенное значение интеграла и оценить погрешность
|