Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Б) Модель многоотраслевой экономики Леонтьева
Основной задачей при математическом моделировании экономических процессов является задача создания модели межотраслевого баланса. Модель эта называется моделью Леонтьева (по имени ее создателя) и активно используется для управления народным хозяйством.
Предположим, что рассматривается n отраслей промышленности, каждая из которых производит свою продукцию. Часть продукции идет на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая часть предназначена для целей конечного (вне сферы материального производства) личного и общественного потребления. Рассмотрим процесс производства за некоторый период времени (например, год).
Введем следующие обозначения: xi — общий (валовый) объем продукции i -й отрасли за данный промежуток времени; xij — объем продукции i -й отрасли, расходуемой j -й отраслью в процессе производства ; yi — объем продукции i -й отрасли, предназначенный к потреблению в непроизводственной сфере — объем конечного потребления. Этот объем составляет обычно более 75% всей производственной продукции. В него входят создаваемые в хозяйстве запасы, личное потребление граждан, обеспечение общественных потребностей (просвещение, наука, здравоохранение, развитие инфраструктуры и т.д.), поставки на экспорт. Указанные величины можно свести в таблицу.
Так как валовый объем продукции любой i -й отрасли равен суммарному объему продукции, потребляемой n отраслями, и конечного продукта, то
(1)
Уравнения (1) называются соотношениями баланса. Будем рассматривать стоимостный межотраслевой баланс, когда все величины, входящие в (1), имеют стоимостное выражение. Введем коэффициенты прямых затрат
,
показывающие затраты продукции i -й отрасли на производство единицы продукции j -й отрасли. Можно полагать, что в некотором промежутке времени коэффициенты aij будут постоянными, это означает линейную зависимость материальных затрат от валового выпуска, т.е.
,
вследствие чего построенная на этом основании модель межотраслевого баланса называется линейной. Соотношения баланса (1) примут вид: (2)
или в матричной записи
Х = А · Х + У, (3)
где , Х = , У = , А — матрица прямых затрат, Х — вектор валового выпуска, У — вектор конечного потребления. Основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат А обеспечивает заданный вектор конечного потребления У. Перепишем уравнение (3) в виде Х – АХ = У, или Е · Х – А · Х = У, (Е – А) · Х = У,
откуда Х = (Е – А)–1 ·Y. (4)
Матрица (Е – А)–1 называется матрицей полных затрат. В соответствии с экономическим смыслом задачи значения xi должны быть неотрицательными при yi ³ 0 и aij ³ 0, где .
Матрица А ³ 0 называется продуктивной, если для любого вектора У ³ 0 существует решение Х ³ 0 уравнения (3). В этом случае модель Леонтьева называется продуктивной. Существует несколько критериев продуктивности матрицы А. Теорема 1. Матрица А продуктивна тогда и только тогда, когда матрица (Е – А)–1 существует и ее элементы неотрицательны. Теорема 2. Матрица А с неотрицательными элементами продуктивна, если сумма элементов по любому ее столбцу (строке) не превосходит единицы: , причем хотя бы для одного столбца (строки) эта сумма строго меньше единицы.
|