Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Производные тригонометрических функций.






 

1) .

= = . Þ .

2) .

Доказывается аналогично первому: .

3) .

= = Þ .

4) y=ctg x. .

 

Производные обратных тригонометрических функций.

1) y=arcsin x. .

2) y=arccos x. .

3) y=arctg x. .

4) y=arcctg x. .

 

Производные логарифмической и показательной функций.

 

1. .

= = = = следствие из второго замечательного предела = =

´ = .

2. . y= .

= = .

.

3. .

= = = =

= = .

.

4. y=еx.

.

.

 

Производная сложной функции.

Теорема. Пусть функция имеет производную в точке t0, а функция имеет производную в точке . Тогда производная сложной функции в точке t0 будет равна:

.

Пример: ,

 

Производная обратной функции.

 

Теорема. Пусть функция монотонна на интервале (a, b) (возрастает или убывает) и имеет производную в каждой точке этого интервала. Если в точке x0 , то обратная функция также имеет производную в соответствующей точке y0, причем

.

 

Логарифмическое дифференцирование.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал