Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дифференциал функции.






Пусть функция определена в точке x0 и ее окрестности. Дадим x0 приращение Dx, тогда функция получает приращение Dy: , где А - число, a(Dx) - б/м более высокого порядка малости чем Dx. Выражение A× Dx называют главной частью приращения Dy.

Определение: Дифференциалом функции называют главную часть ее приращения, линейную относительность Dx.

Обозначают: dy или df, dy=df=A·Dx, где Dx ® 0.

Определение: Функция, имеющая дифференциал в точке x0, называется дифференцируемой в этой точке.

Теорема: Для того чтобы функция была дифференцируема в точке x0 необходимо и достаточно, чтобы она имела в точке x0 конечную производную.

Дифференциал , где Dx – приращение аргумента и обозначается dx, тогда окончательно дифференциал:

.

Пример: Þ Þ .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал