Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теорема сложения






Пусть А и В несовместные события. Вероятность их суммы равна сумме их вероятностей:

 

Р (А + В) = Р (А) + Р (В).

 

Для произвольных событий верна более общая теорема:

 

Р (А + В) = Р (А) + Р (В) – Р (А∙ В).

 

ПРИМЕРЫ:

1. В урне находятся 30 шаров, из них 10 красных, 5 синих и 15 неокрашенных шаров. Найти вероятность извлечения из урны цветного (окрашенного) шара.

Появление цветного шара в одном испытании – это появление либо красного (событие А), либо синего (событие В) шара, т.е. сумма этих событий. С другой стороны появление красного шара исключает появление синего шара в одном испытании, т.е. эти два события несовместны.

Вероятность события А равна: Р (А) = 10 / 30 = 1 / 3, а события В соответственно: Р (В) = 5 / 30 = 1 / 6. Подставив эти вероятности в формулу теоремы сложения для несовместных событий, получим:

2. В магазин могут поступать товары с двух складов. Вероятности поступления товаров с этих складов соответственно равны 0, 4 и 0, 5. Найти вероятность поступления в магазин товаров хотя бы из одного из двух складов.

Событие А (товары поступили с первого склада) и событие В (товары поступили со второго склада) независимы, но совместны, поскольку допускается поступление товаров с двух складов одновременно. Поэтому искомая вероятность суммы этих двух событий будет равна:

Здесь использована формула теоремы умножения вероятностей для независимых событий , которая приводится в подразделе 1.1.6.

 

Поскольку события и несовместны, а их сумма есть достоверное событие, вероятность которого равна 1, можно записать:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал