Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
С помощью первой производной
1. Найти производную функции . 2. Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв. 3. Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции . Если на промежутке , то на этом промежутке функция убывает; если на промежутке , то на этом промежутке функция возрастает. 4. Если в окрестности критической точки меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума. 5. Вычислить значения функции в точках минимума и максимума. С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции. Пример 1: Найти промежутки монотонности и экстремумы функции: . Решение: Найдем первую производную функции . Найдем критические точки по первой производной, решив уравнение Исследуем поведение первой производной в критических точках и на промежутках между ними.
Ответ: Функция возрастает при ; функция убывает при ; точка минимума функции ; точка максимума функции .
|