Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задачи для самостоятельного решения. Исследовать функцию и построить график
Исследовать функцию и построить график 1. 2. у= 3. 4. 5. Тема 3. Интегральное исчисление Неопределенный интеграл. Методы вычисления
Определение 3.1: Функция F(x) называется первообразнойдля функции f(x), если или . Любая непрерывная функция f(x) имеет бесконечное множество первообразных, которые отличаются друг от друга постоянным слагаемым. Определение 3.2: Совокупность F(x)+С всех первообразных для функции f(x) называется неопределенным интегралом от этой функции и обозначается: . Основные свойства неопределенного интеграла: 1. 2. ; 3. 4. ; 5. ; 6. . Непосредственное интегрирование Непосредственное интегрирование предполагает использование при нахождении неопределенных интегралов таблицы интегралов Таблица интегралов
Рассмотрим нахождение интегралов непосредственным методом. Пример 1: Найти неопределенный интеграл: . Решение: = =
. Пример 2: Найти неопределенный интеграл: . Решение: = . Пример 3: Найти неопределенный интеграл Решение: =
|