Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Устойчивость метода Гаусса.






Опуская обременительные преобразования в методе обратного анализа ошибок округления, отметим, что возмущенная система метода Гаусса имеет вид

.

Запишем оценку нормы матрицы возмущения:

.

Вид этой оценки удовлетворял бы критерию устойчивости Уилкинсона, если бы множитель g (A) имел небольшое значение. Поясним смысл множителя g( A ).

Пусть обозначает матрицу, полученную из A после k шагов исключения. Обозначим

.

Тогда

.

Следовательно, g (A) показывает, во сколько раз могут возрасти элементы матрицы A в ходе исключения переменных по сравнению с их исходным уровнем. По этой причине g (A) называют коэффициентом роста матрицы A.

Элементы активной части матрицы A k в методе Гаусса вычисляются по формуле

.

Для ограничения роста элементов матрицы в процессе гауссова исключения желательно, чтобы поправочные члены

в этой формуле были не слишком большими. Это достигается процедурой выбора элемента , который называют главным.

Выбор главного элемента по столбцу. В этом случае ограничение роста элементов матрицы A k на k –м шаге гауссова исключения достигается перестановкой строк таким образом, чтобы гарантировать неравенство

.

С этой целью при исключении переменной в качестве главного элемента выбирается элемент матрицы A k-1 по правилу

,

т. е. наибольший по модулю элемент в k –м столбце матрицы A k-1 (рис. 3.1). Строки r и k переставляются и только после этого выполняется k –й шаг исключения прямого хода Гаусса.

При столбцовой стратегии выбора главных элементов справедлива такая оценка для значения параметра a k, определяющего коэффициент роста:

.

Она допускает, что и, следовательно, коэффициент роста

.

По этой причине метод Гаусса с выбором главного элемента по столбцам является условно устойчивым. Несмотря на это, он широко используется на практике, так как g (A) редко достигает своего верхнего предела.

Выбор главного элемента по всей матрице. В этой стратегии в качестве главного элемента при исключении неизвестной x k выбирается элемент по правилу

,

т. е. наибольший по модулю элемент в квадратной подматрице матрицы A k-1 (рис. 3.2). Строки k и r, а также столбцы k и l переставляются и далее выполняется k –й шаг исключения. Такая стратегия гарантирует выполнение неравенства

и, следовательно, ограничивает рост элементов в процессе исключения Гаусса.

Оценка коэффициента роста элементов матрицы A в этом случае имеет более благоприятный вид:

.

 

? 5. СЛАУ. Точность метода Гаусса. Направления повышенной точности.

Точность метода Гаусса.

Привлекая оценку нормы матрицы возмущения, можно записать, что

.

Анализ неравенства позволяет определить пути повышения точности метода Гаусса: выбор главных элементов, работа с числами удвоенной длины, переобусловливание системы линейных алгебраических уравнений.

6. Уравнение f(x)=0. Лемма об оценке погрешности приближенного решения.

Пусть требуется решить уравнение

,

т. е. найти все корни , удовлетворяющие этому уравнению на отрезке .

Задача численного решения уравнения сводится, во-первых, к отделению корней, во-вторых, к последующему уточнению корней.

Лемма об оценке погрешности приближенного решения уравнения .

Лемма. Пусть уравнение на отрезке имеет корень . Пусть найдено некоторое его приближенное значение . Тогда

,

где

.

Доказательство. Вычислим по теореме о конечных приращениях:

.

Очевидно, что

.

Отсюда

,

или

.

Лемма доказана.

Величину называют невязкой. Из леммы следует, что судить о величине погрешности приближенного решения только по величине невязки нельзя. Необходимо учитывать и значение первой производной. Обратимся к рис. 7.2. Из этого рисунка следует, что одна и та же невязка приводит к существенно разным погрешностям приближенного решения, если производная в окрестности решения сильно отличается.

 

 

7. Уравнение f(x)=0. Метод итераций. Теорема о сходимости и точности.

Пусть требуется решить уравнение

,

т. е. найти все корни , удовлетворяющие этому уравнению на отрезке .

Задача численного решения уравнения сводится, во-первых, к отделению корней, во-вторых, к последующему уточнению корней.

Метод итераций.

Для построения метода итераций преобразуем уравнение

к виду

.

Это можно сделать в общем случае так:

,

или , где

.

Постоянный множитель h выбирается при этом из условия сходимости метода (установим его позже).

Пусть известно начальное приближение . Тогда

Приведенный способ построения числовой последовательности реализуется в методе итераций:

.

Рассмотрим, как ведет себя погрешность решения на итерациях метода. Обозначим , где - погрешности приближенного решения на двух соседних итерациях. Подставим представленные таким образом и в итерационное правило:

.

Разложим функцию в ряд Тейлора в окрестности точки :

.

Пренебрегая остаточным членом , получим соотношение, связывающее погрешность решения метода на двух соседних итерациях:

.

Сделаем некоторые выводы на основании этого приближенного равенства.

· Если , то можно ожидать, что и последовательность будет сходиться к решению, когда начальное приближение выбрано достаточно близким к .

· Если , то скорее всего и метод будет расходиться, так как каждое последующее приближение будет отстоять от

решения дальше, чем предыдущее.

· При и погрешности и имеют одинаковые знаки. Сходимость будет монотонной.

· При и погрешности и имеют разные знаки. Сходимость является немонотонной.

Проиллюстрируем характер сходимости метода итераций графически. Образуем функции . В решении задачи значения этих функций совпадают. Первый пример (см. рис. 7.3, а) соответствует условиям

и, следовательно, в этом случае наблюдается монотонная сходимость метода итераций. В следующем примере (см. рис. 7.3, б)

,

поэтому имеет место немонотонная сходимость. В последнем примере (см. рис. 7.3, в)

.

При таких значениях производной метод итераций расходится.

 

Рис. 7.3. Иллюстрация сходимости метода итераций


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.013 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал