![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Г л а в а 7. Метаматериалы ⇐ ПредыдущаяСтр 8 из 8
7.1. Отрицательное преломление
Метаматериалами, или, точнее, электромагнитными метаматериалами, называются вещества, обнаруживающие необычные электромагнитные свойства. Греческая приставка «meta» означает выход за границу чего-либо. Таким образом, метаматериал – это вещество или искусственная структура, электромагнитные свойства которой выходят за рамки обычных представлений. Сам термин метаматериалы был предложен руководителем Центра электромагнитных материалов и устройств в Остине (штат Техас, США) Роджером Уолсером в 2000 году. Примером метаматериала является изотропная среда с отрицательным показателем преломления. Такое вещество иногда называют средой Веселаго по фамилии отечественного физика В. Г. Веселаго, исследовавшего электромагнитные свойства данной среды [12]. Рассмотрим простейший случай преломления света на плоской границе раздела двух сред. Пусть угол падения электромагнитной волны равен j, а угол преломления равен y (рис. 7.1). Связь между этими углами дается известным законом Снеллиуса:
где Рис. 7.1. Преломление и отражение света на границе раздела двух сред: лучи 1–4 – обычное преломление, лучи 1–3 – отрицательное преломление, лучи 1–2 – отражение
Преломление электромагнитной волны, изображенное на рис. 7.1 лучами 1–3, называется отрицательным преломлением или аномальной рефракцией. Исторически впервые эффект отрицательного преломления электромагнитного излучения был рассмотрен советским физиком Л. И. Мандельштамом в 40-х годах XX века в одной из лекций, где был представлен ход преломленного луча в среде с Отрицательное преломление используется в простом оптическом устройстве, предложенном отечественным физиком В. Г. Веселаго и получившем название «линза Веселаго». Схематическое изображение линзы Веселаго представлено на рис. 7.2. Это устройство является плоскопараллельной пластиной, приготовленной из материала с отрицательным преломлением. Рис. 7.2. Линза Веселаго Если слева от пластины расположить источник света А на расстоянии, меньшем толщины пластины Am < mn, то лучи от этого источника сойдутся справа от пластины в точке В. В этом легко убедиться с помощью простого геометрического построения и с учетом того, что при пересечении границ раздела cd и fg преломленные лучи отклоняются к оси АВ. Указанное построение выполнено на рис. 7.2 для случая, когда плоскопараллельная пластина с показателем преломления
Поскольку в рассматриваемом случае Таким образом, с помощью линзы Веселаго можно получать изображение предметов, расположенных на расстоянии, меньшем толщины линзы, но нельзя получить изображение источника на большем расстоянии. В частности, линза Веселаго не фокусирует в точку плоскопараллельный пучок света и поэтому не является линзой в строгом смысле этого слова. Тем не менее данное оптическое устройство позволяет получить идеальное изображение предмета в том смысле, что точечный предмет оно переводит в точечное изображение. Это характеристическое свойство линзы Веселаго связано с тем, что в основе формирования изображения лежит отрицательное преломление электромагнитного излучения, а не его дифракция.
7.2. Электромагнитные процессы в «левой» среде
Отрицательный показатель преломления возникает в случае, когда диэлектрическая (e) и магнитная (m) проницаемости вещества одновременно имеют отрицательные значения: e < 0, m < 0. Коэффициент преломления среды дается формулой
Это соотношение получается из закона дисперсии поперечных волн в веществе (аналогично выводу формулы (4.45)), если в уравнениях Максвелла (4.30), (4.32) учесть магнитные свойства среды и напряженность макроскопического магнитного поля Ясно, что в случае отрицательности обоих сомножителей в подкоренном выражении в правой части равенства (7.3) коэффициент преломления остается действительной величиной, что отвечает прозрачной среде. Однако не очевидно, что тогда он имеет отрицательное значение
В случае плоской монохроматической волны, когда пространственно-временная зависимость электромагнитного поля описывается мнимой экспонентой
В равенствах (7.6) – (7.7) составляющие электромагнитного поля являются функциями частоты и волнового вектора, квадратные скобки означают векторное произведение. Индукции и напряженности электрического и магнитного полей в случае изотропной среды, которую мы будем предполагать в дальнейшем, связаны материальными соотношениями:
где Отметим, что в отличие от немагнитного приближения, рассмотренного в 4 главе, в настоящем разделе предполагается, что Подставляя формулы (7.8) – (7.9) в (7.6) – (7.7), находим
Из полученных уравнений (7.10) и (7.11) следует, что в случае обычной прозрачной среды, когда Взаимные ориентации векторов напряженностей электрического и магнитного полей и волнового вектора плоской монохроматической волны для случая правой и левой сред показаны на рис. 7.3. Волновой вектор плоской электромагнитной волны определяет пространственное изменение ее фазы. Направление распространения энергии электромагнитного поля определяется вектором Пойтинга, который равен
Рис. 7.3. Взаимная ориентация векторов напряженностей электрического и магнитного полей и волнового вектора плоской электромагнитной волны в правой среде (a) и в левой среде (b) Из этой формулы следует, что векторы В квантовой теории электромагнитного поля волновой вектор электромагнитной волны связан с импульсом фотона соотношением Рассмотрим теперь преломление плоской монохроматической волны при пересечении границы раздела сред с различными восприимчивостями. Из уравнений Максвелла (7.4) – (7.5) следует непрерывность тангенциальных составляющих векторов напряженности электрического и магнитного полей при переходе излучения из одной среды в другую:
Отсюда, в частности, следует, что тангенциальные составляющие полей не изменяют своего направления при переходе излучения между средами с одинаковой и с различной «правизной». Из уравнений Максвелла для индукций электрического и магнитного полей следует непрерывность нормальных составляющих индукции при переходе из одной среды в другую:
Равенства (7.14) говорят о том, что при переходе электромагнитного излучения между средами с различной правизной, помимо изменения модуля, знак нормальной компоненты напряженности электрического и магнитного полей меняется на противоположный. Таким образом, при преломлении света на границе раздела сред с различной правизной напряженности полей изменяются по величине и зеркально отражаются относительно границы раздела сред, как это следует из равенств (7.13) – (7.14). Зеркальному отражению векторов напряженностей электрического и магнитного полей относительно границы раздела сред при изменении правизны вещества отвечает зеркальное отражение волнового вектора во второй среде относительно нормали к границе раздела, как это показано на рис. 7.4 для случая поляризации электромагнитной волны в плоскости падения на примере напряженности электрического поля. Аналогичное отражение справедливо и для магнитного поля. Необходимость такого отражения вытекает из поперечности электромагнитного поля электромагнитной волны, способной распространяться и в вакууме. Нештрихованные величины (рис. 7.4) отвечают второй среде с той же правизной, что и первая среда, штрихованные величины соответствуют изменению правизны вещества при переходе из одной среды в другую. Изменение волнового вектора Рис. 7.4. Зеркальное отражение напряженности электрического поля и волнового вектора электромагнитной волны при переходе к среде с другой правизной в случае поляризации электромагнитной волны в плоскости падения Таким образом, одновременная замена знака у диэлектрической и магнитной проницаемостей вещества с плюса на минус действительно отвечает изменению знака показателя преломления с плюса на минус. С использованием параметра правизны первой и второй сред
Из-за особенности преломления электромагнитной волны в левом веществе, изображенной на рис. 7.1 лучами 1 ® 3, нетрудно показать, что выпуклая линза из левого вещества в вакууме рассеивает свет, а вогнутая линза из левого вещества собирает излучение в вакууме. Сделаем замечание принципиального характера о том, что в левых средах диэлектрическая и магнитная проницаемости вещества должны обладать частотной дисперсией, т.е. должны иметь место зависимости от частоты
Отсюда следует, что при одновременном выполнении неравенств
которое может быть положительным и при одновременной отрицательности диэлектрической и магнитной проницаемостей. Производные по частоте, фигурирующие в правой части равенства (7.17), положительны, если проницаемости вещества описываются, например, плазмоподобными формулами:
где
для всех частот. В то же время в диапазоне Выше отмечалось, что закон Снеллиуса (7.1) справедлив и для метаматериалов с отрицательным преломлением, если учесть знак коэффициента преломления среды. Это же утверждение относится к эффектам Доплера и Вавилова–Черенкова. В общем случае эффект Доплера представляет собой изменение частоты периодического процесса при переходе из одной системы отсчета в другую. Изменение частоты электромагнитной волны, распространяющейся в веществе вследствие эффекта Доплера, дается следующими равенствами:
где Для описания эффекта Вавилова–Черенкова в метаматериале с отрицательным преломлением можно также пользоваться обычными формулами, в которых фигурирует показатель преломления вещества
где На рис. 7.5 изображены волновые векторы и векторы Пойтинга для излучения Вавилова–Черенкова в правой среде (а) и в левой среде (b). Видно, что во втором случае угол излучения тупой и векторы Рис. 7.5. Излучение Вавилова–Черенкова в правой среде (a) и в левой среде (b) В общем случае среды с произвольной правизной преобразуются в формулы Френеля, описывающие изменение компонент электромагнитного поля при пересечении границы раздела сред. Обычно эти формулы записываются в т.н. немагнитном приближении, в котором считается, что магнитная проницаемость вещества равняется единице:
Очевидно, что в случае
Подчеркнем, что соотношение (7.22) «не работает», если одна из сред является метаматериалом с отрицательным преломлением, в то время как выражение (7.21) справедливо для сред с произвольной правизной. Из (7.21), в частности, следует, что условием отсутствия отраженной волны ( Важно подчеркнуть, что в отличие от показателя преломления, который меняет знак при переходе от положительных значений диэлектрической и магнитной проницаемостей к отрицательным значениям, волновое сопротивление среды при таком переходе знака не изменяет, т.е. остается положительной величиной. Из этого обстоятельства следует интересная возможность реализации прохождения электромагнитной волны с произвольной поляризацией через границу раздела сред, когда отраженной волны нет, а преломленная волна присутствует. Это возможно, если в первой среде проницаемости имеют положительные значения Отметим, что в рассмотренном примере отраженная волна отсутствует для любого угла падения и произвольной поляризации электромагнитного излучения. Если оба материала обычные, то отраженная волна отсутствует, только если излучение поляризовано в плоскости падения, а угол падения равняется углу Брюстера. Выражение для угла Брюстера в общем случае веществ с произвольной правизной имеет вид
Очевидно, что в немагнитном приближении ( Одно из возможных применений метаматериалов с произвольным показателем преломления (положительным и отрицательным) представлено на рис. 7.6 [13], где показан ход лучей, преломляющихся на оболочке из метаматериала, заключенной между концентрическими сферами с радиусами Рис. 7.6. Маскировка предмета, находящегося внутри сферы радиуса
7.3. Композитные материалы с отрицательным преломлением
Природные материалы с отрицательным преломлением к настоящему времени не обнаружены, поэтому принципиальную важность имеет вопрос об их искусственном изготовлении. Без решения данной проблемы вышеизложенные теоретические соображения оказываются беспредметными. Современный всплеск интереса к левым средам возник после опубликования работы [14], в которой была экспериментально продемонстрирована композитная среда с отрицательными диэлектрической и магнитной проницаемостями. Напомним, что пионерская работа В. Г. Веселаго, посвященная электродинамике левых сред [12], вышла еще в 1967 г. и целых 33 года оставалась без должного внимания именно в силу отсутствия соответствующего материала. Рассмотрим принципиальные моменты технологии изготовления метаматериалов с отрицательным значением показателя преломления. Как было показано выше, для реализации отрицательных значений показателя преломления необходимо, чтобы диэлектрическая и магнитная проницаемости среды одновременно были отрицательными величинами. Что касается диэлектрической проницаемости, то ее отрицательность характерна для случая плазмы в области низких частот. Это следует из «плазменной» формулы для
Очевидно, что для малых частот Выражение (7.24) описывает такие природные среды, как ионосферная и твердотельная плазмы. Оказывается, что можно создать искусственную среду, эффективная диэлектрическая проницаемость которой в далеком инфракрасном и более низкочастотном диапазонах дается формулой (7.24). (Прилагательное «эффективная» говорит о том, что соответствующая величина введена по аналогии со своим прототипом для характеристики процессов на больших пространственных масштабах, когда композитная среда может рассматриваться как сплошная.) Такое вещество может быть использовано, например, для лабораторного исследования электромагнитных свойств ионосферы. Простейшая реализация указанной среды представляет собой периодическую структуру из проволочных кубиков в предположении, что длина ребра куба (
где
Формула (7.25) получается из (7.26) путем замены концентрации ( Для реализации левой среды важно получить отрицательное значение магнитной проницаемости. Этого можно добиться, если использовать в качестве структурной единицы композитной среды двойной кольцевой резонатор с разрезом, схематическое изображение которого представлено на рис. 7.6. Из-за важной роли такого резонатора в технологии метаматериалов он иногда называется «атомом фотоники». Из рис. 7.6 видно, что двойной резонатор с разрезом состоит из двух металлических колец, вставленных одно в другое, с разрезами, расположенными напротив друг друга. Разрезы необходимы для увеличения резонансной длины волны, а промежуток между кольцами служит для уменьшения резонансной частоты (за счет увеличения емкости) и для концентрации внутри него электрического поля.
Рис. 7.6. Двойной кольцевой резонатор с разрезом Резонатор эффективно взаимодействует с внешним переменным магнитным полем, вектор напряженности которого перпендикулярен плоскости резонатора. Это поле наводит в проводящих кольцах токи, которые в свою очередь создают магнитное поле, направленное антипараллельно внешнему магнитному полю. В результате в рассматриваемом резонаторе возникает диамагнитный отклик на внешнее электромагнитное воздействие. На рис. 7.7 представлен одинарный кольцевой резонатор с разрезом в виде эквивалентного L-C контура. Рис. 7.7. Представление одинарного кольцевого резонатора с разрезом в виде L-C контура На длинах волн, много больших размера резонатора, вышеописанный процесс может быть охарактеризован с помощью эффективной магнитной проницаемости. Для периодического массива из двойных кольцевых резонаторов с разрезом, являющегося искусственной кристаллической решеткой, эффективная магнитная проницаемость дается выражением
где Резонансная частота двойного кольцевого резонатора с разрезом, изображенного на рис. 7.8, для Равенство (7.27) по форме аналогично выражению для диэлектрической проницаемости поляритонов (см. гл. 2), которое было использовано для описания дисперсии поляритонов, с точностью до замены Вблизи резонансной частоты Рис. 7.8 Резонансная кривая медного кольцевого резонатора с разрезом (r = 0, 8 мм, d = 0, 2 мм, r = 1, 5 мм) из статьи [14]
Заметим, что известные природные материалы на гигагерцовых частотах и выше не проявляют магнитных свойств, так что Из формулы (7.27) следует, что в диапазоне Рис. 7.9. Магнитный кольцевой резонатор с разрезом, дополненный электрическим резонатором в виде прямого отрезка проводника, и соответствующая ориентация компонент электромагнитного поля Для структуры, представленной на рис. 7.9, связь между модулем волнового вектора и частотой описывается выражением
где Из дисперсионного выражения (7.28) вытекает, что при условии Первый метаматериал с отрицательной диэлектрической и магнитной проницаемостями на основе структуры, изображенной на рис. 7.9, был продемонстрирован в работе Д. Смита с соавторами [14]. Эффект отрицательного преломления в этой статье был зафиксирован в частотном интервале от 4, 8 до 5, 1 ГГц. Искусственная периодическая структура, состоящая из кольцевых резонаторов с прорезью и прямых отрезков проводника, позволяющая получить отрицательное преломление в гигагерцовом диапазоне частот, изображена на рис. 7.10. После того как было продемонстрировано отрицательное преломление в гигагерцовом диапазоне частот, начали предприниматься усилия для получения данного эффекта в инфракрасной и видимой областях спектра. Основная трудность на этом пути заключалась в получениях отрицательного значения магнитной восприимчивости. Как видно из выражения для резонансной частоты двойного кольцевого резонатора с разрезом Рис. 7.10. Искусственная периодическая среда, позволяющая получить эффект отрицательного преломления Оказалось, что в нанометровом масштабе трудно изготовить трехмерную структуру, изображенную на рис. 7.9, поэтому был разработан альтернативный дизайн метаматериала с отрицательным преломлением. Новый подход базировался на том факте, что пара металлических проволок или пластин, разделенных диэлектрическим промежутком, может обеспечить магнитный резонанс, необходимый для получения отрицательного значения магнитной проницаемости. Этот магнитный резонанс возникает вследствие антипараллельного тока в проволочной паре, при котором на концах проволок аккумулируется заряд разного знака. Кроме магнитного резонанса в рассматриваемой структуре возникает также электрический резонанс, приводящий к отрицательному значению диэлектрической проницаемости, что необходимо для отрицательного преломления среды. Однако пересечения спектральных областей двух резонансов оказалось трудно достичь. Для устранения данного недостатка была разработана наноструктура, которая называется двойная «рыболовная сеть». Она состоит из пары металлических «рыболовных сетей», разделенных диэлектрическим промежутком. Данная структура изображена в правом нижнем углу рис. 7.11.
Рис. 7.11. Развитие технологии метаматериалов
Достоинство «рыболовной сети» по сравнению со структурой, представленной на рис. 7.10, состоит также в том, что электромагнитная волна падает перпендикулярно плоскости образца, а не вдоль его поверхности, как в случае кольцевого резонатора с разрезом, что существенно облегчает проведение соответствующих экспериментов.
7.4. Другие типы метаматериалов Бианизотропные среды Другим примером метаматериалов являются бианизотропные среды, в которых электрическая индукция зависит не только от электрического, но и от магнитного поля так же, как магнитная индукция, являющаяся функцией напряженностей магнитного и электрического полей. Материальные уравнения в общем случае бианизотропной среды имеют вид
В равенства (7.29) помимо тензора диэлектрической Материальные уравнения (7.29) обобщают ранее рассмотренный случай изотропной среды, когда связь между индукцией и напряженностью поля дается выражениями (7.8) – (7.9), в которых Наличие в D слагаемого, пропорционального H, означает, что ток, индуцируемый переменным магнитным полем в элементах, образующих среду, вызывает не только магнитный дипольный момент, но и электрический дипольный момент. Аналогично, переменное электрическое поле индуцирует в таких элементах ток, который создает как электрический, так и магнитный дипольные моменты, поэтому не только D, но и B содержит слагаемое, пропорциональное E [15]. Как видно из равенств (7.29), бианизотропная среда характеризуется большим числом параметров, содержащихся в четырех тензорах проницаемостей. Всего имеется 4 × 9 = 36 комплексных параметров, поскольку трехмерный тензор 2-го ранга, каковым являются все вышеприведенные проницаемости, имеет, вообще говоря, 9 компонент. В случае среды с определенным типом симметрии число независимых компонент тензоров проницаемости может быть меньше 9. Классификация типов сред в зависимости от вида тензоров
Т а б л и ц а 7.1
В таблице 7.1 использованы следующие обозначения: Заметим, что в изотропной среде с учетом пространственной дисперсии выражение для тензора диэлектрической проницаемости можно записать в общем виде через продольную
В пренебрежении пространственной дисперсией, когда исчезает зависимость компонент диэлектрической проницаемости от волнового вектора, имеем Особый интерес представляют среды, распространение электромагнитных волн в которых требует учета как электрической, так и магнитной анизотропии. Наиболее характерным в этом плане материалом, проявляющим бигиротропные свойства в инфракрасном диапазоне, является монокристаллический железоиттриевый гранат Y3Fe5O12 и его различные модификации с замещением части ионов иттрия на ионы редкоземельных металлов Bi, Lu, Tb. Одним из способов реализации бианизотропной среды является создание композиционных материалов, включающих проводящие частицы специальной формы. Примером такой частицы является омега-частица, изображенная на рис. 7.14, которая служит структурным элементом метаматериала, называемого омега-композитом. Омега-частица обеспечивает магнитоэлектрическую связь, причем электрический и магнитный моменты, наведенные в ней электромагнитным полем, перпендикулярны друг к другу. При расположении двух омега-частиц в одной плоскости таким образом, что их прямолинейные участки взаимно перпендикулярны, получается т.н. «шляпка» – структурный элемент одноосной бианизотропной среды.
Бианизотропные материалы обладают необычными электромагнитными свойствами, перспективными для создания на их основе неотражающих покрытий, фазовращателей специального типа и других типов преобразователей электромагнитного излучения.
Фотонные кристаллы К метаматериалам относятся также фотонные кристаллы, представляющие собой среды с периодическим изменением показателя преломления. Свойства фотонных кристаллов описаны в гл. 4. В отличие от рассмотренных выше композитных материалов, в которых размер структурной единицы много меньше длины волны (что позволяло считать их сплошной средой), в фотонных кристаллах пространственный период изменения показателя преломления – порядка длины волны излучения. Именно это обстоятельство лежит в основе специфических электромагнитных свойств фотонных кристаллов, одним из которых является наличие запрещенной фотонной зоны. В этой зоне отсутствуют распространяющиеся электромагнитные волны подобно тому, как в запрещенной электронной зоне полупроводников и диэлектриков отсутствуют электронные состояния. Данное свойство может быть использовано для создания оптических волноводных структур, в которых потери, связанные с выходом излучения за пределы волновода, близки к нулю. Кроме того, фотонная запрещенная зона применяется для создания резонаторов с высокой добротностью в заданном спектральном диапазоне.
Литература 1. Ландау Л.Д., Лифщиц Е.М. Электродинамика сплошных сред. – М.: Физматлит, 2003. – 652 с. 2. Meixner A., Bopp M., Tarrach G. Direct measurement of standing evanescent waves with a photon scanning tunneling microscope // Appl. Opt. – 1994. – V. 33. – P. 7995. 3. Pohl D.W., Denk W., Lanz M.Optical stethoscopy: image recording with resolution l/20 // Appl. Phys. Lett. – 1984. – V. 44. – P. 651–653. 4. Synge E.H.A suggested model for extending microscopic resolution into the ultra-microscopic region // Phil. Mag. – 1928. – V. 6. – P. 356–362. 5. Осадько И.С. Микроскоп ближнего поля как инструмент для исследования наночастиц. // Успехи физ. наук. 2010. – Т. 180. – С.83. 6. https://www.edu.ioffe.ru/register/? doc=winter/2002/main/kalit 7. Durig U., Pohl D.W., Rohner F.Near-field optical scanning mivroscopy // J. Appl. Phys. – 1986. – V. 59. – P. 3318– 327. 8. Novotny L., Hecht B. Principles of nano-optics. – Cambridge: Cambridge University Press, 2007. – 539 p. 9. Yang T.J., Lessard G.A., Quake S.R.An apertureless near-field microscope for fluorescence imaging // Appl. Phys. Lett. – 2000. V. 76. – P. 378–380. 10. Raether H.Surface plasmons. – Berlin: Springer, 1988. – 135 p. 11. Ghaemi H. F., Tineke Thio, Grupp D. E. [et al.]. Surface plasmons enhance optical transmission through subwavelength holes // Phys. Rev. B. – 1998. – V. 58. – P. 6779–6782. 12. Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями e и m // УФН. – 1967. – Т. 92. – С. 517–526. 13. Гуляев Ю.В., Лагарьков А.Н., Никитов С.А. Метаматериалы: фундаментальные исследования и перспективы применений // Вестн
|