цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ йюрецнпхх: юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ |
эФФЕРЕНТНОЕ ТОРМОЖЕНИЕ УЛИТКИ
Как и мышечные веретена, слуховые рецепторы подвергаются эфферентной регуляции. Нейроны комплекса верхних олив (olivary complex) в стволе мозга млекопитающих проецируются на ипсилатералъную и контралатеральную улитку54'. Активация этого пути вызывает высвобождение ацетилхолина в эфферентных синапсах на волосковых клетках и подавляет ответы на звук в афферентных волокнах улитки55· 56). Эфферентная обратная связь снижает чувствительность улитки при наличии фонового шума и снижает риск перегрузки57). Это — аналог переустановки чувствительности мышечного веретена гамма-эфферентами, поддерживающими поток информации во время движения конечности в широком диапазоне положений (глава 22). Эфферентные волокна активируются звуком и иннервируют ограниченные области улитки; в результате подавление шума носит частотноспецифический характер58)--61). В дополнение к восстановлению динамического диапазона торможение расширяет кривую настройки афферентных волокон. Наконец, эфферентная обратная связь может защитить улитку от повреждения громким звуком62). Фактически, сила эфферентной обратной связи находится в обратном соотношении со степенью Глава 18. Обработка соматосенсорных и слуховых сигналов 401
акустического повреждения, вызванного громким звуком63). Активация эфферентного пути к уху черепахи вызывает большие гиперполяризирующие тормозные постсинаптические потенциалы (IPSP) в волосковых клетках64· 65). Влияние торможения на ответ волосковой клетки на звук показан на рис. 18.3А. Клетка была стимулирована чистыми тонами на трех частотах, одна из которых является оптимальной для данной болосковой клетки, вторая — более высокой частотой, и третья — более низкой частотой. Интенсивности тонов были отрегулированы так, что все они вызывали осциллирующий рецепторный потенциал одной и той же амплитуды. Короткая серия стимулов, поданная на эфферентное волокно, гиперполяризировала клетку и сильно ослабила ее ответ на тон при 220 Гц (характеристическая частота). На более низкой и высокой частотах акустической стимуляции активация эфферентов по-прежнему приводила к гиперполяризации, но низкочастотная осцилляция даже увеличивалась по амплитуде, тогда как на высоких частотах амплитуда была неизменна. Этот дифференциальный эффект торможения приводит к расширению частотного диапазона ответов волосковых клеток (рис. 18.13В). Механизм холинергического торможения был исследован в волосковых клетках цыпленка66, 67). Ацетилхолиновые (АХ) рецепторы 402 Раздел III. Интегративные механизмы
являются лиганд-регулируемыми катионными каналами, через которые натрий и кальций входят в клетку, приводя к активации кальцийзависимых калиевых каналов и к гиперполяризации мембраны (глава 10). Подобный холинергический механизм торможения обнаружен в волосковых клетках млекопитающих68)--70). Ответы волосковых клеток на АХ блокируются a-бунгаротоксином, и есть надежное доказательство того, что необычный член семейства никотиновых рецепторов а9 является лиганд-связующей субъединицей АХ рецептора волосковой клетки71)--73).
|