Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Морские ежи
Для морских ежей также характерно радиальное голобластическое дробление, но с некоторыми существенными модификациями. Первое и второе деления дробления очень сходны с такими же делениями у Synapta; оба они меридиональные и перпендикулярны друг другу. Третье деление также экваториальное и отделяет полюсы один от другого (рис. 3.3).
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. 78 ГЛАВА 3
Четвертое деление, однако, происходит иначе, чем у Synapta. Четыре клетки анимального яруса разделяются меридионально на восемь бластомеров одинаковой величины. Эти клетки называют мезомерами. Вегетативный ярус претерпевает неравное экваториальное деление, в результате которого образуются четыре крупные клетки макромеры и четыре клетки меньшего размера микромеры у вегетативного полюса (рис. 3.4). При следующем делении восемь мезомеров 16-клеточного зародыша делятся экваториально и образуют два «анимальных» яруса, ан1, и ан2, расположенные один над другим. Макромеры делятся меридионально, образуя восьмиклеточный ярус ниже ан2. Микромеры также делятся: возникшая маленькая группа клеток примыкает к более крупным клеткам расположенного выше яруса. При шестом делении все борозды ложатся экваториально, при седьмом меридионально. В результате седьмого деления возникает 128-клеточная бластула. Свен Герстадиус (Hö rstadius, 1939) проделал простой опыт, который показал, что время появления борозд дробления у морского ежа и их ориентация не зависят от предыдущих делений. Когда он подавлял первые одно, два или три деления, встряхивая яйца или помещая их в гипотоническую морскую воду, то неравное (четвертое) деление дробления, приводящее к образованию микромеров, все равно наступало в положенное время (рис. 3.5). На этом основании Герстадиус пришел к заключению, что существуют три фактора, которые детерминируют деление 8-клеточного зародыша: 1) «прогрессивные изменения цитоплазмы, которые определяют ориентацию веретен, образующихся спустя определенные интервалы времени после оплодотворения»: 2) в цитоплазме вегетативной области должен существовать особый материал, образующий микромеры; и 3) должен существовать какой-то механизм, который в соответствующий момент активирует материал, образующий микромеры (Hö rstadius, 1973). Природа «микромерных часов» до сих пор не выяснена. Однако Икеда (Ikeda. 1965) получил данные, согласно которым клетка может вести отсчет событий, происходящих при дроблении, благодаря циклическим изменениям в цитоплазме. Он обнаружил, что освобождение сульфгидрильных (-SH) групп белков происходит циклически. Чередование окисленной (—S—S—) и восстановленной (HS—SH) конформаций, вероятно, отражает глубокие изменения в клеточном метаболизме. Икеда показал, что свободные сульфгидрильные группы в наибольшем числе имеются в делящихся бластомерах и в наименьшем — в то время, когда клетки не делятся (рис. 3.6. А). Воздействия, которые предотвращают деления дробления, не оказывают влияния на этот цикл восстановления окисления. Отделение микромеров всегда происходит на четвертом —SHпике после оплодотворения независимо от того, какое число делений дробления было предварительно подавлено (рис. 3.6. Б). Напротив, если подавить возникновение сульфгидрильного пика (путем добавления к морской воде эфира), то отделение микромеров запаздывает. Возможно, что циклические процессы восстановления и окисления играют какую-то роль во внутриклеточном отсчете времени. Из яиц морского ежа был выделен белок (Sakai. 1966. 1968), который сокращается при окислении его свободных сульфгидрильных групп. Подобные белки, возможно, и обусловливают такие циклические изменения. Стадия бластулы при развитии морского ежа начинается тогда, когда число клеток зародыша достигнет 128. Эти клетки образуют стенку полого шара, которая окружает центрально расположенный бластоцель (рис. 3.7). Каждая клетка находится в контакте с богатой белками жидкостью бластоцеля и с гиалиновым слоем. В это время контакт между клетками становится более тесным. Анализ этого процесса у морской звезды показал (DanSohkawa. Fujisawa. 1980), что образование полого
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. ДРОБЛЕНИЕ: СОЗДАНИЕ МНОГОКЛЕТОЧНОСТИ 79
шара происходит одновременно с возникновением плотных контактов между бластомерами. Эти контакты объединяют слабо связанные между собой клетки в ткань и изолируют бластоцель от окружающей среды (рис. 3.8). Поскольку клетки продолжают делиться, поверхность клеточного пласта увеличивается и этот пласт утончается. На протяжении всего периода существования бластулы ее стенка сохраняет однослойность. Для объяснения сопряженности процессов увеличения поверхности стенки бластулы и формирования бластоцеля были предложены две гипотезы. Согласно одной из них (Dan, 1960), первый процесс осуществляется под действием сил, исходящих от самого бластоцеля. Поскольку бластомеры секретируют в бластоцель белки, содержащаяся в бластоцеле жидкость становится вязкой. Эта жидкость поглощает большие количества воды путем осмоса, ее объем увеличивается, и она изнутри оказывает давление на бластомеры. Давление жидкости приводит также к тому, что длинная ось каждой клетки ориентируется определенным образом так, что деление
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. 80 ГЛАВА 3
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. ДРОБЛЕНИЕ: СОЗДАНИЕ МНОГОКЛЕТОЧНОСТИ 81 этих клеток никогда не бывает направлено в сторону бластоцеля: такая ориентация клеточной популяции в одной плоскости способствует ее дальнейшему распространению вширь Согласно другому предположению (Wolpert, Gustafson, 1961; Wolpert, Mercer, 1963), давление жидкости бластоцеля не является необходимым условием получения наблюдаемого эффекта. Авторы этой гипотезы придают особое значение разной адгезивности клеток по отношению друг к другу и к гиалиновому слою. Предполагается, что, пока клетки остаются прочно связанными с гиалиновым слоем, единственной возможностью для них остается расширение поверхности клеточного пласта. Формирование бластулы является скорее следствием этой экспансии, чем какого-либо другого процесса. На наружной поверхности клеток бластулы образуются реснички (рис. 3.9). что позволяет бластуле вращаться внутри оболочки оплодотворения. Вскоре клетки секретируют фермент вылупления, который переваривает оболочку. Зародыш вылупляется и становится свободноплавающей бластулой.
|