Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Метод эквивалентных преобразований






ОПД.Ф.06 Электротехника

Методические указания

к практическим занятиям по направлению

Агроинженерия

 

 

Специальность: 110300 Агроинженерия

Специальность: 110301 Механизация сельского хозяйства

Уфа 2011


УДК 378.147: 621.3

ББК 74.58: 31.2

Ш 17

 

 

Рекомендовано к изданию методической комиссией факультета электрификации и автоматизации сельского хозяйства (протокол № 5 от 16.11. 2011 г.)

 

Составитель: ст. преподаватель Шаяхметов Р.З.

Рецензент: зав.кафедры электрических машин и электрооборудования, д.т.н., профессор Р.С. Аипов

 

Ответственный за выпуск:

заведующий кафедрой автоматики

и электротехники к.т.н. доц. И.И. Галимарданов.


ОГЛАВЛЕНИЕ

  Анализ и расчет линейных электрических цепей постоянного тока  
  Анализ неразветвленных цепей синусоидального тока и определение параметров схем замещения. Векторные диаграммы, треугольники напряжений, сопротивлений и мощностей  
  Анализ цепей синусоидального переменного тока с параллельным соединением ветвей. Векторные диаграммы.  
  Расчет трехфазных цепей при различных способах соединения приемников. Анализ цепи при симметричных и несимметричных режимах работы  
  Расчет трансформаторов  
  Библиографический список  
     
     
     
     

АНАЛИЗ И РАСЧЕТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

ПОСТОЯННОГО ТОКА

 

Теоретические сведения

 

Метод эквивалентных преобразований

Электрическая цепь с последовательным соединением сопротив­лений (рисунок 1.1, а) заменяется при этом цепью с одним эквива­лентным сопротивлением R эк (рисунок 1.3, б), равным сумме всех сопротивлений цепи:

R эк = R 1 + R 2 +…+ R n = , (1.1.)

где R 1, R 2R n – сопротивления отдельных участков цепи.

Рисунок 1.1. Электрическая цепь с последовательным соединением сопротивлений

 

При этом ток I в электрической цепи сохраняет неизменным свое значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков: U 1/ R 1 = U 2/ R 2 = … U n/ R n.

При параллельном соединении сопротивлений все сопро­тивления находятся под одним и тем же напряжением U (рисунок 1.4). Электрическую цепь, состоящую из параллельно соединенных сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением R эк, которое опре­деляется из выражения

, (1.6)

где - сумма величин, обратных сопротивлениям участков параллель­ных ветвей электрической цепи;

Rj – сопротивление параллельного участка цепи;

n – число параллельных ветвей цепи.

Рисунок 1.2 Электрическая цепь с параллельным соединением сопротивлений

 

Эквивалентное сопротивление участка цепи, состоящего из одинаковых парал­лельно соединенных сопротивлений, равно R эк = Rj / n. При параллельном соединении двух сопротивлений R 1 и R 2 эквивалентное сопротивление определяется как R эк = , а токи распределяются обратно пропорционально этим сопротивлениям, при этом U = R 1 I 1 = R 2 I 2 = … = R n I n.

При смешанном соединении сопротивлений, т.е. при наличии участков электрической цепи с последовательным и параллельным соединением сопротивлений, эквивалентное сопротивление цепи определяется в соответствии с выражением

R эк = .

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рисунок 1.3), эквивалентной звездой (рисунок 1.3).

Рисунок 1.3 Электрическая цепь с соединением сопротивлений треугольником и звездой

 

При этом сопротивления лучей эквивалентной звезды определяют по формулам:

R 1 = ; R 2 = ; R 3 = ,

 

где R 1, R 2, R 3 – сопротивления лучей эквивалентной звезды сопротивлений;

R 12, R 23, R 31 – сопротивления сторон эквивалентного треугольни­ка сопротивлений. При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления его рассчитывают по формулам:

R 31 = R 3 + R 1 + R 3 R 1/ R 2; R 12 = R 1 + R 2 + R 1 R 2/ R 3; R 23 = R 2 + R 3 + R 2 R 3/ R 1.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.009 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал