Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоретические сведения. Во многих случаях приходится встречаться с расчетом сложных электрических цепей синусоидального тока






 

Во многих случаях приходится встречаться с расчетом сложных электрических цепей синусоидального тока, которые в общем случае являются цепями со смешанным соединением сопротивлений (рисунок 3.1). Эти электрические цепи могут быть разделены на участки с последовательным и участки с параллельным соединением сопротивлений.

Рисунок 3.1 Смешанное соединение сопротивлений электрической цепи

 

При параллельном соединении сопротивлений параллельные ветви электрической цепи находятся под одним и тем же напряжением U = U 12, поэтому для каждой из этих ветвей определение всех расчетных величин производится по формулам, справедливым для отдельных сопротивлений электрических цепей с последовательным соединением сопротивлений. Для участка цепи с параллельным соединением сопротивлений ток на разветвленном участке определяется в соответствии с первым законом Кирхгофа, записанным для узла разветвления в векторной форме:

. (3.1)

 

Этот ток можно определить графически с помощью векторной диаграммы, как сумму составляющих векторов токов.

Токи в отдельных ветвях электрической цепи могут быть определены через проводимости (y) соответствующих ветвей:

I 1 = U 12× y 1; I 2 = U 12× y 2; I 3 = U 12× y 3. (3.2)

 

При этом ток в неразветвленной части цепи равен произведению напряжения U 12 на параллельном участке цепи на сумму проводимостей параллельно включенных сопротивлений

I = U 12× (y 1 + y 2 + y 3). (3.3)

 

Сопротивления отдельных ветвей могут носить активно-реактивный характер при наличии индуктивных ХL и емкостных Х C сопротивлений, поэтому в общем случае сопротивления могут быть определены через активные g и реактивные b проводимости:

(3.4)

При этом активные и реактивные проводимости:

(3.5)

При параллельном соединении индуктивного и емкостного сопротивлений (рисунок 3.2, а) в электрической цепи возможен резонанс токов (особое состояние электрической цепи при параллельном соединении катушки индуктивности L и конденсатора C, при которых реактивная индуктивная проводимость равна реактивной емкостной проводимости, т.е. b L = b C).

Полная проводимость электрической цепи при резонансе токов оказывается минимальной, равной активной проводимости цепи.

Векторная диаграмма токов и напряжений при резонансе токов приведена на рисунке 3.2 б. Коэффициент мощности в электрической цепи cos j = g / y = 1 принимает максимальное значение, а угол сдвига фаз между током и напряжением j = 0, поэтому при резонансе токов напряжение U и общий ток I совпадают по фазе.

а
 
 

б

Рисунок 3.2 Электрическая цепь с параллельным соединением катушки индуктивности и конденсатора: а – электрическая схема; б – векторная диаграмма

 

При смешанном соединении сопротивлений (рисунок 3.1) электрическая цепь при расчете приводится к виду (рисунок 3.3). Полное сопротивление Z 12 участка цепи 1-2 может быть определено через ее проводимость Z 12 = 1/ y 12. При этом расчет электрической цепи со смешанным соединением сопротивлений сводится к расчету простейшей электрической цепи с последовательным соединением сопротивлений.

Рисунок 3.3 Электрическая цепь после преобразования

 

При параллельном и смешанном соединении сопротивлений векторную диаграмму строят, начиная с вектора напряжения U 12 на параллельном участке цепи.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал