Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теорема Жуковского о подъемной силе и направлении движения вихрей






Рассмотрим обтекание вращающегося цилиндра. Пусть цилиндр вращается в движущейся жидкости по часовой стрелке (рис. 72). На той стороне цилиндра, где скорость по окружности суммируется со скоростью по­тока, вихри образовываться не будут или их будет небольшое количество. С диамет­рально противоположной стороны образу­ется область, заполненная вихрями.

Следовательно, процесс обтекания не будет симметричным. Рассматривая сече­ние цилиндра по нормали к оси, можно видеть, что над цилиндром скорости по­тока будут больше, чем под ним. В соот­ветствии с уравнением Бернулли; там, где скорость больше, давление меньше, и, следовательно, вверху будет пониженное дав­ление, а внизу — повышенное. В ре­зультате неравенства давлений возника­ет подъемная сила, стремящаяся двигать цилиндр в направлении, перпендикуляр­ном потоку. При вращении цилиндра в потоке возникают зна­чительные усилия, направленные перпендикулярно движению потока, при этом величина поперечной силы зависит от соотношения между скоростью потока и скоростью вращения цилиндра.

Подъемная сила, возникающая у вращающегося в потоке круглого цилиндра, отражает частный случай теоремы Жуковского; подъемная сила обязана своим происхождением наличию циркуляции скорости вокруг контура цилиндра.

Если через Г обозначить циркуляцию скорости, м2/сек; через v - скорость движения жидкостного потока, м/сек; через ρ – плотность жидкости, кГ∙ сек24 и через l — длину цилиндра, м, то подъемная сила R может быть выражена:

[кГ]. (11, 76)

Уравнение (II, 76) формулирует теорему Жуковского о подъемной силе: подъемная сила, возникающая вследствие циркуляции вихрей, перпендикулярная к оси потока, движущегося в бесконечности со ско­ростью v, равна плотности жидкости, помноженной на циркуляцию, на скорость потока и на длину цилиндра.

Теорема Жуковского приложима к определению подъемной силы любых тел, движущихся в жидкости. Жуковский разработал теорию присоединенных вихрей, основная идея которой заключается в том, что обтекаемые тела могут быть заменены вихрями. Поэтому можно воспользоваться теоремой Жуковского о подъемной силе применитель­но к движению самих вихрей [5]. На вихрь должна действовать та же сила, которая действовала на твердый цилиндр, т. е. сила Жуковского.

Таким образом, на любой вихрь, когда он перемещается внутри жидкости или обтекается жидкостью, всегда действует сила, направ­ленная так же, как и сила Жуковского, т. е. нормально к оси вихря и скорости обтекающего вихрь потока.

Кинетическая энергия частиц, из которых состоит вихрь, равна , где m - масса частиц; v — скорость слоя, из которого образо­вался вихрь. Часть этой кинетической энергии расходуется на кинетическую энергию вращательного движения вихря, равную , где I - момент инерции ядра вихря; ω — угловая скорость вращения ядра вихря. Если некоторая доля кинетической энергии вихря убав­ляется, то поступательная скорость движения вихря должна также уменьшаться. Вихрь при этом должен отставать от того слоя, из ко­торого он образовался. Перемещение вихря относительно окружаю­щей его жидкости должно создавать силу Жуковского. Последняя будет смещать вихри в направлении, где скорость больше, т. е. от пе­риферии к оси потока, и если движение происходит в трубе, то эта сила будет направлена от стенки трубы внутрь жидкости. Это положе­ние в полной мере относится к вихрям, отрывающимся от шерохова­тых стенок.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.015 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал