Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема Ферма
Теорема. Пусть функция y = f (x) определена в интервале (а; b) и в некоторой точке c Î (а; b) принимает наибольшее (наименьшее) значение. Тогда, если в точке существует производная, то она равна нулю: Геометрический смысл теоремы: так как то касательная к графику функции в точке М, абсцисса которой равна с, параллельна оси Ox (рисунок 29). Рисунок 29
Замечания: 1. По условию теоремы функция определена в интервале (a; b). В этом промежутке все точки внутренние. Таким образом, точка взята внутри промежутка Х. 2. Если функция принимает наибольшее (наименьшее) значение на конце промежутка, например, в точке а промежутка X = [ a; b ], и в этой точке существует конечная односторонняя производная, то она может не равняться нулю.
Пример 1. Проверить, удовлетворяет ли функция условиям теоремы Ферма на отрезке
Решение Функция определена на интервале На концах отрезка функция принимает наибольшее и наименьшее значения: при х = 0 функция принимает наименьшее значение: Условие теоремы не выполнено, поскольку наибольшее (наименьшее) значение функция должна принимать внутри промежутка, а не на его концах. В результате, хотя функция в точке принимает наибольшее значение и имеет конечную производную: производная в этой точке отлична от нуля:
Пример 2. Проверить, удовлетворяет ли функция у = х 2 условиям теоремы Ферма на отрезке Решение Функция определена на интервале При х = 0 функция принимает наименьшее значение: f (0) = 02 = 0. Это наименьшее значение функция принимает внутри интервала. Функция у = х 2 в точке х = 0 имеет конечную производную: которая в этой точке равна нулю: Таким образом, теорема Ферма применима к функции у = х 2 на отрезке
Тест 1. Пусть функция y = f (x) определена в интервале (a; b) и в некоторой точке c Î (а; b) принимает наибольшее (наименьшее) значение. Тогда, если в точке существует производная, то: 1) 2) 3) 4) 5)
Тест 2. Теорема Ферма применима, если: 1) функция y = f (x) определена в интервале (a; b); 2) функция y = f (x) в некоторой точке c Î (а; b) принимает наибольшее (наименьшее) значение; 3) функция y = f (x) определена в интервале (a; b) и в некоторой точке c Î (а; b) принимает наибольшее (наименьшее) значение; 4) функция y = f (x) определена в интервале (a; b) и в некоторой точке c Î (а; b) принимает наибольшее (наименьшее) значение, причем, в точке существует конечная производная 5) в точке c Î (а; b) существует конечная производная
Тест 3. Условиям теоремы Ферма на отрезке удовлетворяет функция: 1) 2) 3) 4) 5)
|