Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основні складові частини класичної моделі нормальної регресії
Початковим пунктом будь-якого регресійного аналізу є наступна ситуація: об’єкт дослідження представлений величинами . Між ними існує об’єктивний зв’язок. На основі знань про об’єкт дослідження точно відомо, що величина залежить від величин . Цей зв’язок, між залежною величиною та незалежними, в принципі, можна представити лінійною функцією. Але в дійсності спостережувані величини відхиляються від функціонального зв’язку. Відхилення включаються до моделі, причому припускається, що лінійний функціональний зв’язок між спостережуваними величинами доповнюється адитивною випадковою величиною . Лінійне рівняння функціонального зв’язку називається регресійним рівнянням: Значення спостережуваних величин вважаються при оцінці параметрів наперед відомими. Це означає, що за кожною з них існує ряд даних. Значення та істинні значення параметрів в конкретному випадку невідомі. Основна мета регресійного аналізу – теоретично обґрунтований та статистично-вірогідний прогноз. Якщо множина незалежних змінних складається з одного елемента , регресію називають лінійною парною, в іншому випадку – багатофакторною. Лінійну багатофакторну регресійну модель зручно розглядати в матричному вигляді. Введемо допоміжну змінну , яка відповідатиме параметру і запишемо модель багатофакторної лінійної регресії для кожного спостереження: Розглянемо позначення: – матриця результатів, вектор-стовпчик розмірності спостережень за незалежною змінною; – матрицю факторів (враховуючи допоміжну змінну, значення якої для кожного спостереження дорівнює одиниці, ), матрицю розмірності спостережень за незалежними змінними; – матриця параметрів, вектор розміру ; – матриця випадкових величин, вектор розмірності . Виходячи з наведених позначень:
Цей вираз зручно записати у матричному вигляді:
|