Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Другие условия закрепления.






Рассмотрим случай консольной балки:

 

 


Рис. 17.7

 

Будем пользоваться геометрической аналогией. Эта задача аналогична приведенной ниже:

 

 
 

 


Рис. 17.8

 

Правая её половина точно такая же, как рассматриваемая балка, следовательно:

 

Рассмотрим теперь случай защемления с двух концов:

 

Рис. 17.9

 

Здесь только половина балки, а именно её серединная часть изгибается как шарнирная:

 

Рис. 17.10

 

Таким образом:

Введем параметр n – число волн, которые образуются при продольном изгибе балки, тогда получим:

Пользуясь этой аналогией, получим еще одну (приближенную) формулу для случая, изображенного на рис. 17.11:

 

 

 

Рис. 17.11

 

В расчетной практике вместо n используют - коэффициент приведенной длины :

Запишем формулу Эйлера с помощью нового обозначения:

 

(17.10)

Кроме того, в теории устойчивости вводят параметр:

 

(17.11)

Здесь - безразмерная величина, являющаяся относительной длиной, называется гибкостью.

Для корня вводят специальное обозначение:

(17.12)

Аналогично,

(17.13)

Величины - называются радиусами инерции сечения.

В новых обозначениях получим:

 

(17.14)

 

Это наиболее употребительный вид формулы Эйлера.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал