Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Продольный изгиб






Снова рассмотрим изгиб балки под действием продольной центральной силы Р, но предварительно изогнутой приложенными по концам сосредоточенными моментами m (см. рис. 17.12). Этот момент может быть вызван внецентренным нагружением продольной силой Р, если он имеет эксцентриситет е, то m=Ре.

Рис. 17.12

Уравнение изогнутой оси примет вид

Деля на и принимая уже использованное выше обозначение , решение этого уравнения запишем в виде

 

Как и при выводе формулы Эйлера, константы В и С отыскиваем из условий закрепления:

(1): на левом краю

(2): на правом краю

Это дает:

(1): на левом краю

(2): на правом краю

Отсюда

(1):

(2):

 

При Р=Ркр , то есть при , имеем

Тогда из выражения для В вытекает, что

Следовательно, при Р→ Ркр получаем неограниченно большие прогибы:

Таким образом, при внецентренном нагружении (или при наличии предварительного изгиба) балка может выдержать продольную сжимающую силу, которая не может быть больше Ркр



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал