Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Общие сведения. В предыдущих разделах рассматривалось совместное изменение двух переменных, одна из которых зависела от другой
В предыдущих разделах рассматривалось совместное изменение двух переменных, одна из которых зависела от другой. В науке нередки случаи, когда для определения значения некоторой величины необходимо установить значения, совместно принимаемые несколькими независимыми переменными. Так, например, объём кругового цилиндра есть функция от радиуса его основания и от высоты ; зависимость между этими переменными выражается формулой , которая даёт возможность определить значение объёма , зная значения двух переменных и . Изучая физическое состояние какого-нибудь тела, приходится наблюдать изменение его свойств от точки к точке: температуры, плотности, напряжений и т. д. Все эти величины можно рассматривать как функции координат точки, то есть как функции от трёх независимых переменных. Функции, зависящие от двух и более переменных, называют функциями нескольких переменных. Наиболее часто приходится иметь дело с функцией от двух переменных. Рассмотрим на плоскости Oxy некоторое множество точек с координатами иобозначим его через D. ОПРЕДЕЛЕНИЕ. Величину называют функцией независимых переменных и на множестве D, если каждой паре этого множества по некоторому правилу или закону ставится в соответствие одно определенное значение величины . Множество D называют областью определения функции . Переменные и по отношению к функции называют ее аргументами. Функции нескольких переменных могут быть заданы в явном и неявном виде. Функциональная зависимость между и , обозначается различными способами: , , и т.д. Если пара взята из области , то называют частным значением функции , которое она принимает, когда . Пример. Найти область определения функции . Найти частное значение функции в точке . РЕШЕНИЕ Квадратный корень определён в случае, если подкоренное выражение является неотрицательным. Поэтому функция определена при тех действительных значениях переменных и , для которых одновременно выполняются следующие условия: и . Геометрическое изображение решения системы неравенств (область определения функции) представлено на рис. 1. Частное значение функции в точке равно . В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x, у) плоскости. Подобно тому, как функция геометрически изображается графиком, можно геометрически задать функцию , ставя в соответствие каждой точке аппликату . Мы получим некоторое множество точек (x; y; z) трехмерного пространства – чаще всего некоторую поверхность. Поэтому равенство называют уравнением поверхности. Пример. Пусть задана функция . Ее область определения найдем из неравенства , т.е. . Это круг с центром в начале координат и радиусом r (рис. 2). Графиком функции являетсяверхняя половина сферы (разрешив уравнение сферы относительно z, получим две однозначные функции : и ). Рассмотрим функцию и точку . Полным приращением функции в точке называют разность . Если изменение функции происходит при изменении только одного из аргументов, например х, при фиксированном значении другого аргумента - у, то функция получит приращение , которое называют частным приращением функции по х. Также задается частное приращение по переменной : . ОПРЕДЕЛЕНИЕ. Функцию называют непрерывной в точке , если она определена в некоторой окрестности этой точки и если бесконечно малым приращениям и соответствует бесконечно малое приращение , т.е. , где . Обозначим через , а через . Тогда из того, что и следует, что и . И условие непрерывности функции можно записать в виде: или . Это равенство означает, что функция непрерывна в точке , если предел функции равен значению функции в предельной точке.
|