Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Ряды Тейлора и Маклорена






Предположим, что функция в промежутке имеет непрерывные производные всех порядков. Для такой функции справедливы формулы:

и , называемые формулами Тейлора и Маклорена. Слагаемое называют остаточным членом формулы.

Составим ряд

,

в частности, при , - ряд .

Определение. Такие ряды (независимо от того, сходятся они или нет) называются соответственно рядами Тейлора и рядами Маклорена для функции f(x).

Рассмотрим ряд Маклорена для функции f(x). Этот ряд является степенным, поэтому его область сходимости – интервал .

Теорема 7 (Сходимость ряда Маклорена). Для того, чтобы ряд Маклорена сходился и имел своей суммой функцию f(x), необходимо и достаточно, чтобы на остаточный член формулы Маклорена стремился к нулю при : .

Если выполняются условия теоремы, то говорят, что функция разлагается в степенной ряд на интервале .

Приведем разложение в ряд Маклорена основных элементарных функций и область сходимости рядов:

; ; ;

, ; ;

.

 

Пример выполнения контрольной работы № 1. Вариант 0.

1. Записать комплексное число в трех формах записи. Вычислить: . Найти все значения корня: : .

Решение. Рассмотрим число - это общая форма комплексного числа. Тогда это число можно изобразить точкой на комплексной плоскости (или радиус-вектором). Запишем его в трех других формах. Для этого вычислим модуль и главное значение аргумента данного числа (модуль комплексного числа – есть расстояние от этой точки до начала координат (или длина радиус-вектора), а аргумент – есть угол между положительным направлением оси и радиус-вектором точки (отсчет против часой стрелки). Аргумент вычисляется с точностью до , поэтому выделяют главное значение аргумента):

,

(т.к. ).

Тогда: - алгебраическая форма записи числа;

- тригонометрическая форма записи числа;

- показательная форма записи числа.

Вычислим теперь значение выражения: .

Для этого воспользуемся алгебраической формой комплексных чисел:

. Имеем:

Для того, чтобы найти все значения корня из комплексного числа удобно записать его в тригонометрической форме. Сначала найдем модуль и аргумент числа . Получим: .

Используем формулу извлечения корня из комплексного числа:

Подставим найденные значения:

Подставляя 3 значения , окончательно получаем 3 значения корня:

Ответ. ; ;

 

2. Вычислить интегралы от функций комплексного переменного.

а) , где L – линия, соединяющая точки и .

Решение. Так как подынтегральная функция не является аналитической, то используем общую формулу сведения интеграла от комплексной функции к криволинейным интегралам от вещественных функций: .

Для комплексного числа сопряженным является число , тогда для функции имеем: . Кривая - есть отрезок, соединяющий точки и , уравнение этой кривой: . Тогда вдоль этой кривой: и:

= .

б) Использовать интегральную формулу Коши: ,

L – окружность: .

Решение. Рассмотрим подынтегральную функцию . Ее особые точки (в которых знаменатель обращается в 0) . Одна из них не принадлежат области, охватываемой кривой L, а вторая принадлежит этой области (см. Рис.10), поэтому в этой области функция не является аналитической.

Рис. 10

Интеграл можно переписать в виде: , при этом функция, стоящая в числителе: , аналитическая в области, ограниченной контуром L, и точка охватывается контуром L. Применяя интегральную формулу Коши: , получаем:

.

Ответ. а) =0; б) .

3. Исследовать сходимость положительных числовых рядов.

Решение. а) .Общий член данного ряда: . Для исследования сходимости, сначала проверяем выполнение необходимого признака сходимости. ; необходимый признак не выполняется, значит, ряд расходится.

б) . Общий член данного ряда . Проверим выполнение необходимого признака сходимости: , значит, данный ряд может сходиться и расходиться. Применим достаточный признак сходимости, воспользуемся признаком Даламбера: , , тогда . Следовательно, данный ряд сходится.

Ответ. Ряд расходится; ряд сходится.

4. Разложить функцию в ряд по степеням . Найти радиус и область сходимости ряда.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал