![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема об эквивалентности пар сил.
Предположим F3=–F`1 и F`3=–F1 и совместим точки приложения этих сил с проекциями А1 и B1 точек А и В на плоскость II (см. рис. 3.10). Следует: М3=–M1 или, учитывая, что М1=М2, М2+М3 = 0, получим (F2, F`2, F3, F`3)~0. Т.о., пары (F2, F`2) и (F3, F`3) взаимно уравновешены и присоединение их к телу не нарушает его состояния (аксиома 2), так что (F1, F`1)~(F1, F`1, F2, F`2, F3, F`3). С другой стороны, силы F1 и F3, а также F`1 и F`3 можно сложить по правилу сложения параллельных сил, направленных в одну сторону. Они равны по модулю, поэтому их равнодействующие R и R' должны быть приложены в точке пересечения диагоналей прямоугольника ABB1A1, кроме того, они равны по модулю и направлены в противоположные стороны. Это означает, что они составляют систему, эквивалентную нулю. Итак, (F1, F`1, F3, F`3)~(R, R')~0. Теперь можем записать (F1, F`1, F2, F`2, F3, F`3)~(F2, F`2). Получим (F1, F`1)~(F2, F`2)и т.д.. Из этой теоремы следует, что пару сил можно перемещать и поворачивать в плоскости ее действия, переносить в параллельную плоскость; в паре можно менять одновременно силы и плечо, сохраняя лишь направление вращения пары и модуль ее момента (F1h1=F2h2).
|