Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
V. Некоторые новые методы в квантовой теории поля 3 страница
где gi(g_к) - кратность вырождения уровня Ei (Ek), т. е. число различных состояний системы, имеющих одну и ту же энергию Ei (соответственно Ek), с - скорость света. Для переходов между невырожденными уровнями (gi = = gk = 1) Bki = Вik, т. е. вероятности вынужденных К. п.- прямого и обратного - одинаковы. Если один из коэфф. Эйнштейна известен, то по соотношениям (3) и (4) можно определить остальные. Вероятности излучательных переходов различны для разных К. п. и зависят от свойств уровней энергии Ei и Ek, между к-рыми происходит переход. Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрич. и магнитные свойства квантовой системы, характеризуемые её электрическими и магнитными моментами. Возможность излучательиых К. п. между уровнями Ei и Ek с заданными характеристиками определяется отбора правилами. (Подробнее см. Излучение электромагнитное.) Безызлучательные квантовые переходы также характеризуются вероятностями соответствующих переходов Сki и Сik - средними числами процессов отдачи и получения энергии Ek - Ei в 1 сек, рассчитанными на одну частицу с энергией Ek (для процесса отдачи энергии) или энергией Ek (для процесса получения энергии). Если возможны как излу-чательные, так и безызлучательные К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Учёт безызлучательных К. п. играет существенную роль, когда его вероятность того же порядка или больше соответствующего К. п. с излучением. Напр., если с первого возбуждённого уровня E 2 возможен спонтанный излучательный переход на осн. уровень E1 с вероятностью A21 и безызлучательный переход на тот же уровень с вероятностью C21, то полная вероятность перехода равна A21 + C21, а время жизни на уровне равно [ris] '2 = 1/(A21 + C21) вместо [ris] 2 = 1/A2 при отсутствии безызлучат. перехода. T. о., за счёт безызлучат. К. п. время жизни на уровне уменьшается. При C21> > A21 время [ris]'2 очень мало по сравнению с [ris] 2, и подавляющее большинство частиц будет терять энергию возбуждения E 2 - E1 при безызлучательных процессах - будет происходить тушение спонтанного испускания. Лит. см. при ст. Атом, Молекула, Спектры оптические. M. А. Ельяшевич. КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ, устройства, в к-рых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетич. состояния в другое. К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период, т. е. время, с наибольшей точностью по сравнению с др. стандартами частоты (см. Частоты стандарт, Время). Это привело к их внедрению в метрологию. К. с. ч. служат основой национальных эталонов частоты и времени и вторичных эталонов частоты, к-рые по классу точности и метрологич. возможностям приближаются к нац. эталону, но подлежат калибровке по нему. К. с. ч. применяются как лабораторные стандарты частоты, имеющие широкий набор выходных частот и снабжённые устройством для сравнения измеряемой частоты с частотой стандарта, а также как [ris] е-перы частоты, к-рые позволяют наблюдать выбранную спектральную линию, не внося в неё существенных искажений, И сравнивать (с высокой точностью) измеряемую частоту с частотой, фиксируемой спектральной линией. Качество К. с. ч. характеризуется их стабильностью - способностью сохранять выбранное значение частоты неизменным в течение длительного промежутка времени. Квантовые законы накладывают весьма жёсткие ограничения на состояние атомов. Под действием внешнего электромагнитного поля определённой частоты атомы могут либо возбуждаться, т. е. скачком переходить из состояния с меньшей энергией E1 в состояние с большей энергией E 2, поглощая при этом порцию (квант) энергии электромагнитного поля, равную: hv = E2 - E1, либо переходить в состояние с меньшей энергией, излучая электромагнитные волны той же частоты (см. Атом, Квантовая электроника). К. с. ч. принято разделять на два класса. В активных К. с. ч. квантовые переходы атомов и молекул непосредственно приводят к излучению электромагнитных волн, частота к-рых служит стандартом или опорной частотой. Такие приборы наз. также квантовыми генераторами. В пассивных К. с. ч. измеряемая частота колебаний внешнего генератора сравнивается с частотой колебаний, соответствующих определённому квантовому переходу выбранных атомов, т. е. с частотой спектральной линии. Первыми достигли технич. совершенства и стали доступными пассивные К. с. ч. на пучках атомов цезия (цезиевые стандарты частоты). В 1967 междунар. соглашением длительность секунды определена как 9.192.631.770, 0 периодов колебаний, соответствующих определённому энергетич. переходу атомов единственного стабильного изотопа цезия 133Cs. Нуль после запятой означает, что это число не подлежит дальнейшему изменению. В цезие-вом стандарте частоты наблюдается контур спектральной линии 133Cs, соответствующей переходу между 2 выбранными уровнями энергии E1 и E 2. Частота, соответствующая вевшине этой линии, фиксируется и с ней при помощи спец. устройств сравниваются измеряемые частоты. Гл. частью К. с. ч. с пучком атомов Cs является атомнолучевая трубка, в к-рой поддерживается высокий вакуум. В одном конце трубки расположен источник пучка атомов Cs - полость, в к-рой находится небольшое кол-во жидкого Cs (рис. 1). Полость соединена с остальной трубкой узким каналом или набором параллельных каналов. Источник поддерживается при темп-ре ок. 100 0C, когда Cs находится в жидком состоянии (темп-pa плавления Cs 29, 5 0C), но давление его паров ещё мало, и атомы Cs, вылетая из источника, пролетают через каналы достаточно редко, не сталкиваясь друг с другом. В результате этого в трубке формируется слабо расходящийся пучок атомов Cs. В противоположном конце трубки расположен чрезвычайно чувствительный приёмник (детектор) атомов Cs, способный зарегистрировать ничтожные изменения в интенсивности пучка атомов. Рис. 1. Схема атомнолучевой трубки: / -источник пучка Cs; 2 и 4- отклоняющие магниты, создающие неоднородные магнитные поля H1 и H2; 3 - объёмный резонатор, в котором возбуждаются электромагнитные волны, находящийся в постоянном и однородном магнитном поле H; 5 - раскалённая вольфрамовая проволочка; 6 - коллектор ионов Cs; 7 - измерительный прибор; 8 - область постоянного однородного магнитного поля H (ограничена пунктиром). Детектор состоит из раскалённой вольфрамовой проволочки 5 и коллектора 6, между к-рыми включён источник напряжения (положительный полюс присоединён к проволочке, а отрицательный - к коллектору). Как только атом Cs касается раскалённой вольфрамовой проволочки, он отдаёт ей свой внешний электрон (энергия ионизации Cs равна 3, 27 эв, а работа выхода электрона из вольфрама составляет 4, 5 эв; см. Поверхностная ионизация). Ион Cs притягивается к коллектору. Если на раскалённый вольфрам попадает достаточно много атомов Cs, то в цепи между коллектором и вольфрамовой проволочкой возникает электрич. ток, измеряя к-рый, можно судить об интенсивности цезиевого пучка, попавшего на детектор. По пути от источника к детектору пучок атомов Cs проходит между полюсными наконечниками двух сильных магнитов. Неоднородное магнитное поле Hi первого магнита расщепляет пучок атомов Cs на неск. пучков, в к-рых летят атомы, обладающие различными энергиями (находящиеся на разных энергетич. уровнях). Второй магнит (поле H2) направляет (фокусирует) на детектор только атомы, принадлежащие к одной паре энергетич. уровней E 1 и E2, отклоняя в стороны остальные. В промежутке между магнитами атомы пролетают через объёмный резонатор 3 - полость с проводящими стенками, - в к-ром возбуждаются (с помощью стабильного кварцевого генератора) электромагнитные колебания определённой частоты. Если под влиянием этих колебаний атом Cs с энергией E1 перейдёт в энергетич. состояние E 2, то поле второго магнита отбросит его от детектора, т. к. для атома, перешедшего в состояние E 2, поле второго магнита уже не будет фокусирующим и этот атом минует детектор. T. о., ток через детектор окажется уменьшенным на величину, пропорциональную числу атомов, совершивших энергетич. переходы под влиянием электромагнитного резонатора. Таким же образом будут зафиксированы переходы атомов Cs из состояния E_ 2 в состояние E1. Число атомов, совершающих вынужденный переход в ед. времени под действием электромагнитного поля, максимально, если частота действующего на атом электромагнитного поля точно совпадает с резонансной частотой V0 = (E 2 - E1)/n. По мере увеличения несовпадения (расстройки) этих частот число таких атомов уменьшается. Поэтому, плавно меняя частоту поля вблизи v 0 и откладывая по горизонтальной оси частоту [ris], а по вертикали изменение тока детектора, получим контур спектральной линии, соответствующий переходу E_ 1-> E2 и обратно E_ 2-> E1 (рис. 2, а). Частота v 0, соответствующая вершине спектральной линии, и является опорной точкой (репером) на шкале частот, а соответствующий ей период колебаний принят равным 1/9 192 631, 0 сек, Точность определения частоты, соответствующей вершине спектральной линии, как правило, составляет неск. процентов, а в лучшем случае - доли процента от ширины линии. Она тем выше, чем уже спектральная линия. Этим объясняется стремление устранить или по крайней мере ослабить все причины, приводящие к уширению используемых спектральных линий. В цезиевых стандартах уширение спектральной линии (рис. 2, а) обусловлено временем взаимодействия атомов с электромагнитным полем резонатора: чем меньше это время, тем шире линия (см. Неопределённостей соотношение). Время взаимодействия совпадает со временем пролёта атома через резонатор. Оно пропорционально длине резонатора и обратно пропорционально скорости атомов. Рис. 2. Форма спектральной линии в цезиевых стандартах частоты: а - с обычным резонатором; 6 - в случае П-образного резонатора; [ris] - резонансная частота, [ris][ris] - ширина спектральной линии. Но длина резонатора не может быть сделана очень большой (увеличивается рассеяние атомного пучка). Существенно уменьшить скорость атомов, понижая темп-ру, также невозможно, т. к. при этом падает интенсивность пучка. Увеличение размеров резонатора затруднено и тем, что он должен располагаться в весьма однородном по величине и направлению магнитном поле H. Последнее необходимо потому, что используемые энергетич. переходы в атомах Cs обусловлены изменением ориентации магнитного момента ядра атома Cs относительно магнитного момента его электронной оболочки (см. Электронный парамагнитный резонанс). Переходы такого типа не могут наблюдаться вне магнитного поля, причём частота, соответствующая таким переходам, зависит (хотя и слабо) от величины этого поля. Создавать такое поле в большом объёме затруднительно. Получение узкой спектральной линии достигается применением резонатора П-образной формы (рис. 3). В этом резонаторе пучок пролетает через отверстие вблизи его концов и только там взаимодействует с высокочастотным электромагнитным полем. Поэтому только в двух этих небольших областях необходимы однородность и стабильность магнитного поля H. При этом перед вторым влётом в резонатор атомы " сохраняют" результат первого взаимодействия с полем. В случае П-образного резонатора спектральная линия приобретает более сложную форму (рис. 2, 6), отражающую и время пролёта в электромагнитном поле внутри резонатора (широкий пьедестал), и полное время пролёта между обоими концами резонатора (узкий центральный пик). Именно узкий центральный пик служит для фиксации частоты. Рис. 3. Схема атомнолучевой трубки с П-образным резонатором (обозначения те же, что и на рис. 1). В К. с. ч. с пучком атомов Cs погрешность в значении частоты v0 имеет место лишь в 13-м знаке для уникальных устройств (эталонов частоты) и в 12-м знаке для серийных приборов высокой точности (вторичных эталонов или стандартов частоты). В состав К. с. ч. с пучком атомов Cs наряду с атомнолучевой трубкой и кварцевым генератором входят спец. радиосхемы, позволяющие с высокой точностью сравнивать измеряемую частоту внешних генераторов с частотой, определяемой К. с. ч. Кроме того, обычно цезиевый стандарт дополняют устройствами, вырабатывающими набор " целых" стандартных частот, стабильность к-рых равна стабильности эталона. Иногда эти системы вырабатывают и сигналы точного времени. В таких случаях К. с. ч. превращается в квантовые часы. Уникальные лабораторные образцы К. с. ч. на пучках атомов Cs, входящие в состав нац. эталонов частоты и времени, обеспечивают воспроизведение длительности секунды, а следовательно всей системы измерения частоты и времени с относительной погрешностью, меньшей чем 10-11. Эта относительная погрешность практически не превышает 10-12, но для фиксации этого значения междунар. соглашением необходимо проведение длительных наблюдений. Существенным преимуществом К. с. ч. на пучках атомов цезия является то, что их пром. конструкции обеспечивают воспроизведение номинального значения частоты (времени) с погрешностью 10-11, т. е. не уступают по точности эталону. Даже малогабаритные приборы этого типа, пригодные для применения в условиях обычных лабораторий и на подвижных объектах, работают с погрешностью не более 10-10, а нек-рые образцы и 10-11. Наиболее важным активным К. с. ч. является водородный квантовый генератор (рис. 4). В водородном генераторе пучок атомов водорода выходит из источника 1, где при низком давлении под влиянием электрич. разряда молекулы водорода расщепляются на атомы. Размеры каналов, сквозь к-рые атомы вылетают из источника 1 в вакуумную камеру, меньше, чем расстояние, пролетаемое атомами водорода между их столкновениями. При этом условии атомы водорода вылетают из источника в виде узкого лучка. Этот пучок проходит между полюсными наконечниками многополюсного магнита 2. Действие поля, создаваемого таким магнитом, таково, что оно фокусирует вблизи оси пучка атомы, находящиеся в возбуждённом состоянии, и разбрасывает в стороны атомы, к-рые находятся в основном (невозбуждённом) состоянии. Рис. 4. Устройство водородного генератора: / - источник атомного пучка; 2 - сортирующая система (многополюсный магнит); 3 - резонатор; 4 - накопительная колба. Возбуждённые атомы пролетают через маленькое отверстие в кварцевую колбу 4, находящуюся внутри объёмного резонатора 3, настроенного на частоту, соответствующую переходу атомов водорода из возбуждённого состояния в основное. Под действием электромагнитного поля атомы водорода излучают, переходя в основное состояние. Фотоны, излучаемые атомами водорода в течение сравнительно большого времени, определяемого добротностью резонатора, остаются внутри него, вызывая снова вынужденное испускание таких же фотонов атомами водорода, влетающими позже. T. о., резонатор создаёт обратную связь, необходимую для самовозбуждения генератора (см. Генерирование электрических колебаний). Однако достижимая интенсивность пучков атомов водорода всё же недостаточна для того, чтобы обеспечить самовозбуждение такого генератора, если используется обычный объёмный резонатор. Поэтому в резонатор помещают кварцевую колбу 4, стенки к-рой покрыты изнутри тонким слоем фторопласта (тефлона). Возбуждённые атомы водорода могут удариться о плёнку тефлона более десяти тысяч раз, не потеряв при этом свою избыточную энергию. Благодаря этому в колбе скапливается значит, число возбуждённых атомов водорода и среднее время пребывания каждого из них в резонаторе увеличивается примерно до 1 сек. Этого достаточно для того, чтобы условия самовозбуждения были выполнены и водородный генератор начал работать, излучая электромагнитные волны с чрезвычайно стабильной частотой. Колба, размеры к-рой выбираются меньшими, чем генерируемая длина волны, играет ещё одну, чрезвычайно важную роль. Хаотичное движение атомов водорода внутри колбы должно было бы привести к уширению спектральной линии вследствие эффекта Доплера (см. Доплера эффект). Однако если движение атомов ограничено объёмом, размеры к-рого меньше длины волны, то спектральная линия приобретает вид узкого пика, возвышающегося над широким низким пьедесталом. В результате этого в водородном генераторе, генерирующем излучение с длиной волны [ris] = 21 см, ширина спектральной линии составляет всего 1 гц. Именно чрезвычайно малая ширина спектральной линии обеспечивает малую погрешность частоты водородного генератора, также лежащую в пределах 13-го знака. Погрешность обусловлена взаимодействием атомов водорода с фторпла-стовым покрытием колбы. Значение этой частоты, измеренное при помощи К. с. ч. на пучке атомов Cs (см. выше), равно 1.420.405.751, 7860 + 0, 0046 гц. Мощность водородного генератора чрезвычайно мала (~10-12 вт). Поэтому К. с. ч. на основе водородного генератора включает в себя, помимо схем сравнения и формирования сетки стандартных частот, чрезвычайно чувствительный приёмник. Оба описанных К. с. ч. работают в диапазоне сверхвысоких радиочастот (СВЧ). Известен ряд др. атомов и молекул, спектральные линии к-рых позволяют создавать активные и пассивные К. с. ч. радиодиапазона. Однако они пока не нашли практич. применения. Лишь К. с. ч. на атомах рубидия, основанные на методе оптической накачки, широко применяются в качестве вторичного стандарта частоты в лабораторной практике, а также в системах радионавигации и в квантовых часах. К. с. ч. оптич. диапазона представляют собой лазеры, в к-рых приняты спец. меры для стабилизации частоты их излучения. В оптич.диапазоне доплеровское уширение спектральных линий очень велико и из-за малой длины световых волн подавить его так, как это сделано в водородном генераторе, не удаётся. Создать же эффективный лазер на пучках атомов или молекул пока также не удаётся. T. к. в пределах доплеровской ширины спектральной линии помещается неск. относительно узких резонансных линий оптич. резонатора, то частота генерации подавляющего большинства лазеров определяется не столько частотой используемой спектральной линии, сколько размерами оптич. резонатора, определяющими его резонансные частоты. Но эти частоты не остаются постоянными, а изменяются под влиянием изменений темп-ры, давления, под действием вибраций, старения и т. п. Наименьшая относительная погрешность частоты у оптич. К. с. ч.(~ 10-13) достигнута с помощью гелий-неонового лазера, генерирующего на волне 3, 39 мкм (см. Газовый лазер). Внутрь резонатора лазера помещена трубка, наполненная метаном при низком давлении. Метано-вая ячейка деформирует форму спектральной линии лазера, образуя на ней чрезвычайно узкий и стабильный по частоте резонансный пик. Именно на вершине этого пика происходит самовозбуждение лазера, а частота его излучения определяется гл. обр. положением вершины пика. Для повышения максимальной стабильности вся конструкция помещается в термостат, стабилизируются источники питания, длина резонатора и т. п. К. с. ч. оптич. диапазона пока ещё не связаны (в метрологич. смысле) с К. с. ч. радиодиапазона, а следовательно, с единицей частоты (гц) и единицей времени (сек). Непосредственное измерение частоты (сравнение с эталоном) возможно только в длинноволновом участке инфракрасного диапазона (3, 39 мкм и длиннее). Лит.: Квантовая электроника, Маленькая энциклопедия, M., 1969, с. 35; Григорьянц В. В., Ж а б о т и н-ский M. E., Золин В. Ф., Квантовые стандарты частоты, M., 1968, с. 164, 194; Басов H. Г., Беленов Э. M., Сверхузкие спектральные линии и квантовые стан" дарты частоты, " Природа", 1972, № 12. M. E. Жаботинский. КВАНТОВЫЕ ЧАСЫ, устройство для точного измерения времени, основной частью к-рого является квантовый стандарт частоты. Роль " маятника" в К. ч. играют атомы. Частота, излучаемая или поглощаемая атомами при их квантовых переходах из одного энергетич. состояния в другое, регулирует ход К. ч. Эта частота настолько стабильна, что К. ч. позволяют измерять время точнее, чем астрономич. методы (см. Время). К. ч. часто наз. атомными часами. К. ч. применяются в системах радионавигации, в астрономич. обсерваториях, в исследовательских и контрольно-изме-рит. лабораториях и т. п., заменяя собой менее совершенные кварцевые часы. Сигналы квантовых стандартов частоты сами по себе не могут быть использованы для вращения часового механизма, т. к. мощность этих сигналов ничтожно мала, а частота колебаний, как правило, весьма высока и имеет нецелочисленное значение (напр., мощность атомного водородного генератора составляет 10-11 -10-12 вт, а частота равна 1420, 406 Мгц). Это затрудняет непосредственное использование квантовых стандартов частоты в службе времени, в различных навигационных системах, а также в лабораторной практике. В этих случаях более удобно иметь набор (сетку) стандартных высокостабильных частот: 1 кгц, 10 кгц, 100 кгц, 1 Мгц и т. д. при высокой мощности выходного сигнала. Поэтому К. ч., помимо квантового стандарта частоты, содержат спец. радиотехнич. устройства, формирующие такую сетку частот и обеспечивающие вращение стрелок часов (или смену цифр на их циферблате) и выдачу сигналов точного времени. Большинство К. ч. содержит вспомогательный кварцевый генератор. Из-за изменения частоты кварцевого генератора во времени (старения) точность базирующихся на нём кварцевых часов была бы сама по себе недостаточно высока. В К. ч. частота кварцевого генератора контролируется с помощью квантового стандарта частоты, благодаря чему точность часов повышается до уровня точности самого квантового стандарта. Однако введение периодич. поправок оператором не всегда удобно. Для нек-рых устройств, в частности навигационных, более рационально повышение стабильности частоты кварцевого генератора с помощью автоматич. подстройки его частоты к частоте квантового стандарта. В одном из вариантов такой подстройки (фазовая автоподстройка частоты, рис. 1) частота v KB кварцевого генератора (обычно ~10-20 Мгц) умножается радиотехнич. средствами в нужное число (и) раз и в смесителе вычитается из частоты квантового стандарта v CT. Подбором конкретных значений [ris] кв и n разностную частоту [ris] = (v CT - n [ris] КВ) можно сделать приблизительно равной частоте кварцевого генератора: [ris] КВ = (v CT - n [ris] КВ). Рис. 1. Блок-схема квантовых часов с фазовой автоматической подстройкой частоты. После усиления сигнал разностной частоты ([ris] ст - n[ris] КВ) подаётся на один вход фазового детектора, а на другой его вход подаются колебания кварцевого генератора. Фазовый детектор вырабатывает напряжение, величина и знак к-рого зависят от отклонения разностной частоты Д и частоты кварцевого генератора v KВ друг от друга. Это напряжение подаётся затем на блок управления частотой кварцевого генератора и вызывает сдвиг частоты генератора, к-рый компенсирует отклонение v KВ от разностной частоты Д. T. о., любое изменение частоты кварцевого генератора вызывает появление на выходе блока управления напряжения соответствующей величины и знака, сдвигающего частоту в обратном направлении. Поэтому частота кварцевого генератора автоматически поддерживается неизменной. В результате стабильность его частоты становится практически равной стабильности частоты квантового стандарта. Синтезатор частот формирует из сигнала кварцевого генератора сетки столь же точных стандартных частот. Одна из них служит для питания электрич. часов, а остальные используются для метрологических и др. целей. Погрешность хода лучших К. ч. такого типа при тщательном изготовлении и настройке составляет не более 1 сек за неск. тыс. лет. Первые К. ч. были созданы в 1957 (рис. 2). Стандартом частоты в них служил молекулярный генератор на пучке молекул аммиака. Созданные позднее К. ч., в к-рых используется квантовый стандарт частоты с пучком атомов цезия, не нуждаются в калибровке по эталону, т. к. номинальное значение опорной частоты может быть установлено на основе манипуляций в самом приборе. Рис. 2. Первые квантовые часы, построенные в Национальном бюро стандартов США, с молекулярным аммиачным генератором в качестве квантового стандарта частоты. Недостатки этих К. ч.- большой вес и чувствительность к вибрациям. В К. ч. другого типа (наиболее распространённых) применяется рубидиевый стандарт частоты с оптич. накачкой. Они легче, компактнее, не боятся вибраций, но нуждаются в калибровке, после чего они поддерживают установленное значение частоты с погрешностью порядка 10-11 в течение года. Осн. частью рубидиевых К. ч. является спец. радиоспектроскоп с оптич. накачкой и оптич. индикацией, фиксирующий спектральную линию изотопа 87Rb, лежащую в диапазоне СВЧ. Спектроскоп содержит объёмный резонатор 3, в к-ром находится колба 2 с парами изотопа 87Rb (рис. 3) при давлении ~ 10-6 мм рт. ст. Рис. 3. Схема рубидиевого стандарта частоты с оптической накачкой: / - лампа, освещающая колбу 2, наполненную парами 87Rb; 3 - объёмный резонатор; 4 - фото детектор; 5 - усилитель низкой частоты; 6 - фазовый детектор; 7 - генератор низкой частоты; 8 - кварцевый генератор; 9 - умножитель частоты. Резонатор настроен на частоту спектральной линии 87Rb, равную 6835 Мгц. Чувствительность обычного радиоспектроскопа недостаточна для того, чтобы зафиксировать радиочастотную линию 87Rb. Для увеличения чувствительности используются оптич. накачка паров 87Rb и оптич. индикация спектральной линии. На атомы 87Rb направляется свет, частота к-рого совпадает с частотой др. спектральной линии 87Rb, лежащей в оптич. диапазоне. Газоразрядная лампа / низкого давления с парами 87Rb освещает колбу. Свет, прошедший сквозь колбу, попадает на фотоприёмник (напр., фотоэлектронный умножитель). Под действием света рубидиевой лампы (накачка) атомы 87Rb возбуждаются, т. е. переходят из состояния с энергией E_ 2 в состояние с энергией E 3 (рис. 4). Если интенсивность света достаточно высока, то наступает насыщение - число атомов, находящихся в состояниях E2 и E3, становится одинаковым. При этом поглощение света в парах уменьшается (т. к. число невозбуждённых частиц на уровне E_ 2 способных поглощать кванты света, уменьшается) и пары 87Rb становятся прозрачнее, чем они были бы при воздействии на них накачки. Если одновременно с накачкой пары 87Rb облучить радиоволной, частота к-рой равна частоте спектральной линии, лежащей в диапазоне СВЧ и соответствующей переходам атомов 87Rb между уровнями E1 и E2, то, поглощаясь, она переводит атомы 87Rb с уровня E1 на уровень E 2 (рис. 4). Такая радиоволна будет препятствовать насыщающему действию световой волны, в результате чего поглощение света в парах 87Rb увеличится. T. о., измеряя при помощи фотоприёмника интенсивность света, прошедшего через колбу с парами 87Rb, можно точно определить, действуют ли одновременно на эти пары свет с частотой, соответствующей переходу E2 -> E 3, и радиоволна с частотой перехода E1-> E2. Рис. 4. Уровни энергии атомов 87Rb, используемые в рубидиевых часах. Источником радиоволны служит кварцевый генератор, возбуждающий в резонаторе электромагнитное поле резонансной частоты. Если плавно изменять частоту генератора, то в момент её совпадения с частотой радиоспектральной линии 87Rb интенсивность света, попадающего на фотоприёмник, резко уменьшится. Зависимость интенсивности света, прошедшего через пары 87Rb, от частоты радиоволны используется для автоматич. подстройки частоты колебаний кварцевого генератора по частоте радиоспектральной линии. Колебания кварцевого генератора модулируются по фазе при помощи вспомогат. генератора низкой частоты (см. Модуляция колебаний. Фазовая модуляция). Поэтому свет, проходящий через колбу, оказывается модулированным по интенсивности той же низкой частотой. Модуляция света тем сильнее, чем точнее совпадает частота электромагнитного поля в резонаторе с частотой радиоспектральной линии 87Rb. Электрич. сигнал фотоприёмника после усиления подаётся на фазовый детектор, на к-рый поступает также сигнал непосредственно от низкочастотного генератора. Амплитуда выходного сигнала фазового детектора тем больше, чем меньше разность частот (расстройка) частоты спектральной линии и поля резонатора. Этот сигнал подаётся на элемент, изменяющий частоту кварцевого генератора, и поддерживает её значение таким, чтобы оно точно совпадало с вершиной спектральной линии 87Rb.
|