Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






XVIII. Кино 18 страница. Лит.: КрайзмерЛ.П., Быстродействующие ферромагнитные запоминающие устройства, М






Лит.: КрайзмерЛ.П., Быстродействующие ферромагнитные запоминающие устройства, М. - Л., 1964; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974; Китович В. В., Магнитные и магнитооптические оперативные запоминающие устройства, 2 изд., М., 1975; Шигин А. Г., Дерюгин А. А., Цифровые вычислительные машины. Память ЦВМ, М., 1975. А. В. Гусев.

ФЕРРИТОВЫЙ СЕРДЕЧНИК, магнитопровод из феррита. Благодаря очень малой удельной электропроводности ферритов в материале Ф. с. при перемагничивании практически не возникают вихревые токи и, следовательно, отсутствуют потери энергии, что обусловливает возможность использования Ф. с. в paдиоэлектронной аппаратуре, работающей в диапазоне радиочастот. Осн. области применения Ф. с.- радиотехника, автоматика, телемеханика и вычислит. техника. Технология произ-ва Ф. с. основана на методах порошковой металлургии. Из смеси порошков исходных веществ прессуют сердечники нужной формы. Спекание производят при темп-ре 850-1500 °С в воздушной среде с последующим медленным (в течение неск. ч) охлаждением. Магнитные и диэлектрич. свойства Ф. с. зависят от состава смеси, процентного содержания исходных компонентов в ней и режима термич. обработки, меняя к-рые можно получать Ф. с. с заданными свойствами, напр. с высокой начальной магнитной проницаемостью (для использования в высокочастотных и импульсных трансформаторах), или с прямоугольной петлей магнитного гистерезиса (для использования в запоминающих устройствах).

Методы порошковой металлургии позволяют изготовлять Ф. с. разных форм (П- и Ш-образные; кольцевые, или броневые; сложной конфигурации, с неск. отверстиями в одной или разных плоскостях и др.) и различных размеров (от неск. см до десятых долей мм). Наиболее распространены кольцевые Ф. с. с прямоугольной петлей гистерезиса, у к-рых после намагничивания и снятия намагничивающего поля сколь угодно долго сохраняется одно из двух возможных устойчивых магнитных состояний, соответствующих двум значениям остаточной магнитной индукции (+Вr и - Вr). Это свойство Ф с. обусловило их преимущественное использование как элементов памяти в запоминающих устройствах и логических элементах (напр., в ферритди-одных ячейках, ферриттранзисторных ячейках). Перемагничивание Ф. с. (его перевод из одного магнитного состояния в другое) производится магнитным полем тока, пропускаемого по обмоткам Ф. с. Время перемагничивания зависит от амплитуды и фронта импульса тока, коэрцитивной силы, прямоугольности петли гистерезиса и от геометрич. размеров сердечника; оно лежит в пределах от десятых долей мксек до неск. мксек. Кольцевые Ф. с. с непрямоугольной петлей гистерезиса применяют гл. обр. в импульсных трансформаторах и ВЧ дросселях.

Лит.: Пирогов А. И., Шамаев

Ю. М., Магнитные сердечники для устройств автоматики и вычислительной техники, 3 изд., М., 1973; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974. А. В. Гусев.

ФЕРРИТТРАНЗИСТОРНАЯ ЯЧЕЙКА, импульсный элемент устройств автоматики и вычислит. техники, выполненный на одном или неск. кольцевых феррито-вых сердечниках с прямоугольной петлей гистерезиса и транзисторе. Простейшая Ф. я. (рис.) содержит один феррито-вый сердечник. На сердечник намотаны: одна или неск. обмоток записи, на к-рые поступают входные электрич. импульсы; одна или неск. обмоток считывания, на к-рые подаются импульсы опроса; выходная обмотка, на к-рой при перемагни-чивании сердечника появляется считанный сигнал. Транзистор усиливает сигнал и обеспечивает разделение цепей, что устраняет возможность нежелательного прохождения сигналов в обратном направлении при последоват. соединении неск.

Ф. я. В статич. состоянии транзистор заперт напряжением смещения. При записи сигнал, возникающий на выходной обмотке, ещё больше запирает транзистор. При считывании сигнал на выходной обмотке компенсирует действие напряжения смещения, транзистор отпирается и усиливает считанный сигнал. Ф.я.конструктивно выполняют в отд. корпусе как самостоят. модуль.

Ф. я. лишены ряда недостатков, присущих ферритдиодным ячейкам; они просты, надёжны, имеют хорошие экс-плуатац. характеристики, но обладают сравнительно малым быстродействием (~105 переключений в сек). На базе Ф. я. в 60-х гг. 20 в. разработаны логические элементы для специализированных ЦВМ; Ф. я. получили применение также в устройствах автоматики (делители частоты, сдвигающие регистры и; т. п.) и телемеханики. Однако технологич. сложность изготовления Ф. я. ограничила масштабы их производства; с появлением интегральных микросхем Ф. я. стали применяться редко.

Лит.: Ионов И. П., Магнитные элементы дискретного действия, М., 1968; Тутевич В. Н., Телемеханика, М., 1973; Бардиж В. В., Магнитные элементы цифровых вычислительных машин, 2 изд., М., 1974.

А. В. Гусев.

ФЕРРИТЫ, химич. соединения окиси железа Fe2O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэлектрич. свойства, благодаря чему они получили широкое применение как магнитные материалы в радиотехнике, радиоэлектронике, вычислит. технике. В состав Ф. входят анионы кислорода О2-, образующие остов их кристаллич. решётки; в промежутках между ионами кислорода располагаются катионы Fe3+, имеющие меньший радиус, чем анионы О2-, и катионы Meк+1 металлов, к-рые могут иметь радиусы различной величины и разные валентности k. Существующее между катионами и анионами кулонов-ское (электростатическое) взаимодействие приводит к формированию определённой кристаллич. решётки и к определённому расположению в ней катионов. В результате упорядоченного расположения катионов Fe3+ и Mek+ Ф. обладают ферримагнетизмом и для них характерны достаточно высокие значения намагниченности и точек Кюри. Различают Ф.-шпинели, Ф.-гранаты, ортоферриты и гексаферриты.

Ферриты-шпинели имеют структуру минерала шпинели с общей формулой MeFe2O4, где Me - Ni2+, Со2+, Fe2+, Mn2+, Mg2+, Li1+, Cu2+. Элементарная ячейка Ф.-шпинели представляет собой куб, образуемый 8 молекулами MeOFe2O3 и состоящий из 32 анионов О2-, между к-рыми имеется 64 тетра-эдрических (А) и 32 октаэдрических (В) промежутков, частично заселённых катионами Fe3+ и Me2+ (рис. 1). В зависимости от того, какие ионы и в каком порядке занимают промежутки А и В, различают прямые шпинели (немагнитные) и обращённые шпинели (ферримагнитные). В обращённых шпинелях половина ионов Fe3+ находится в тетраэдрич. промежутках, а в окта-эдрич. промежутках - 2-я половина ионов Fe3+ и ионы Ме2+. При этом намагниченность Мл октаэдрич. подрешётки больше тетраэдрической МВ, что приводит к возникновению ферримагнетизма.

Ферриты-гранаты редкоземельных элементов R3+ (Gd3+, Tb3+, Dy3+, Но3+, Er3+, Sm3+, Eu3+) и иттрия Y3+ имеют кубич. структуру граната с общей формулой R3Fe5O12. Элементарная ячейка Ф.-гранатов содержит 8 молекул R3Fe5O1.,; в неё входит 96 ионов О2-, 24 иона R3+ и 40 ионов Fe3+. В Ф.-гранатах имеется три типа промежутков, в к-рых размещаются катионы: большая часть ионов Fe3+ занимает тетраэдриче-ские (d), меньшая часть ионов Fe3+ - октаэдрические (а) и ионы R3+ - додека-эдрич. места (с). Соотношение величин и направлений намагниченностей катионов, занимающих промежутки d, а, с, показано на рис. 2.

Схема простейшей ферриттранзисторной ячейки: ФС - ферритовый сердечник; Т - транзистор; w3 - обмотка записи; wc - обмотка считывания; w6 - выходная обмотка; Е - напряжение смещения; Е п- напряжение питания; RK - сопротивление в цепи коллектора; RH - нагрузка.

Рис. 1. Кристаллическая структура ферритов-шпинелей: а - схематическое изображение элементарной ячейки шпинельной структуры (её удобно делить на 8 равных частей - октантов); б - расположение ионов в смежных октантах ячейки (заштрихованном и белом), белые кружки - ионы О2-, чёрные - ионы металла в октаэдрических и тет-раэдрических промежутках; в - ион металла в тетраэдрическом промежутке; г - нон металла в октаэдрическом промежутке.

Рис. 2. Схематическое изображение величин и направлений векторов намагниченности катионов, образующих магнитные подрешёткя d, а и с в ферритах-гранатах.

Ортоферритами наз. группу Ф. с орторомбической кристаллич. структурой. Их образуют редкоземельные элементы или иттрий по общей формуле RFeO3. Ортоферриты изоморфны минералу перовскиту (см. Изоморфизм). По сравнению с Ф.-гранатами они имеют небольшую намагниченность, т. к. обладают неколлинеарным антиферромагнетизмом (слабым ферромагнетизмом) и только при очень низких темп-pax (порядка неск. К и ниже) - ферримагнетизмом.

Ферриты гексагональной структуры (гексаферриты) имеют общую формулу MeO(Fe2O3), где Me - ионы Ва, Sr или Рb. Элементарная ячейка кристаллич. решётки гексаферритов состоит из 38 анионов О2-, 24 катионов Fe3+ и 2 катионов Ме2+ (Ва2+, Sr2+ или Рb2+). Ячейка построена из двух шпинельных блоков, разделённых между собой ионами Рb2+ (Ва2+ или Sr2+), О2- и Fe3+. Если окиси железа и бария спекать совместно с соответствующими количествами следующих металлов: Mn, Cr, Co, Ni, Zn, то можно получить ряд новых оксидных ферримагнетиков.

Нек-рые гексаферриты обладают высокой коэрцитивной силой и применяются для изготовления постоянных магнитов. Большинство Ф. со структурой шпинели, феррит-гранат иттрия и нек-рые гексаферриты используются как магнитно-мягкие материалы.

При введении примесей и создании не-стехеометричности состава (переменности состава как по катионам, так и по кислороду) электрич. сопротивление Ф. изменяется в широких пределах. Ф. в полупроводниковой технике не применяются из-за низкой подвижности носителей тока. Синтез поликристаллич. Ф. осуществляется по технологии изготовления керамики. Из смеси исходных окислов прессуют изделия нужной формы, к-рые подвергают затем спеканию при темп-рах от 900 °С до 1500 0С на воздухе или в спец. газовых средах.

Монокристаллич. Ф. выращиваются методами Чохральского, Вернейля и др. (см. Монокристалл).

Лит.: Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты. Строение, свойства, технология производства, Л., 1968; Смит Я., Вейн X., Ферриты, пер. с англ., М., 1962; Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973. К. П. Белов.

ФЕРРО, Даль Ферро (Dal Ferro) Сципион (1465, Болонья, - 1526, близ Болоньи), итальянский математик. С 1496 проф. Болонского ун-та. С именем Ф. связано открытие правила решения в радикалах кубич. уравнений вида: х3 + рх = q.

Лит.: Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969.

ФЕРРО, Иерро (Ferro, Hierro), остров в Атлантич. ок., в группе Канарских о-вов. Терр. Испании. Пл. 275 км2. Нас. 5, 5 тыс. чел. (1970). Выс. до 1501 м. Горячие источники. Климат тропич. сухой. Растительность с преобладанием эндемичных видов (Канарская сосна, дикая финиковая пальма). Земледелие, виноградарство; разврдят коз, овец, кр. рог. скот. Гл. город - Вальверде. До 1884 через Ф. (ок. 18° з. д.) проводили меридиан, к-рьга в ряде стран был принят за начальный.

ФЕРРО..., ФЕРР... (от лат. ferrum - железо), в химич., технич. и др. терминах составная часть, означающая отношение к железу; см., напр., Феррит, Ферросплавы.

ФЕРРОБОР, ферросплав, содержащий 10-25% В, по 2-5% Si и А1 (остальное Fe); получают в руднотермич. печах

алюминотермич. способом (см. Алюминотермия) из боратовой руды или борного ангидрида. Ф. и др. сплавы Fe с В (фер-роборал, грейнал) используются для легирования, раскисления и модифицирования стали.

ФЕРРОВАНАДИЙ, ферросплав, содержащий 35-45% V, 1-3% Si, 0, 5- 1, 5% А1 (остальное Fe и примеси); выплавляют в электропечах силикотермич. способом (см. Силикотермия) из пятиокиси ванадия (85-95% У2Оз), получаемой химико-металлургич. переработкой железованадиевого концентрата. Ф. применяют гл. обр. для легирования стали. Наряду с Ф. выпускаются силикова-надий, выплавляемый в электропечах, а также металлич. ванадий и богатый Ф. (до 80% V), получаемые внепечным алю-минотермич. способом (см. Алюминотермия).

ФЕРРОВОЛЬФРАМ, ферросплав, содержащий 68-72% или 78-86% W, до 7% Мо (остальное Fe и примеси); выплавляют в руднотермич. печах комбинированным силикотермическим (см. Силикотермия) и углевосстановитель-ным (см. Карботермия) процессом из вольфрамитового и шеелитового концентратов. Готовый Ф. вычерпывают стальными ложками спец. машиной; более богатый Ф. плавят " на блок", к-рый после остывания разбивают. Ф. применяется гл. обр. при производстве инструментальных сталей (напр., быстрорежущей) и жаропрочных сплавов.

ФЕРРОГРАФИЯ, то же, что магнито-графия.

ФЕРРОД [англ. ferrod, от fer(rit) - феррит и rod - стержень], бесконтактный электромагнитный телефонный коммутац. прибор, действие к-рого основано на использовании магнитного насыщения ферромагнетика (т. е. по принципу действия подобный трансформатору с подмагни-чиванием). Служит для реализации ло-гич. функций в управляющих устройствах квазиэлектронных автоматических телефонных станций (напр., для индикации состояния абонентской линии). Осн. элементы Ф. (см. рис.): сердечник, выполненный в виде бруска или стержня из феррита с прямоугольной петлей гистерезиса и низкой коэрцитивной силой; две последовательно соединённые обмотки управления (ОУ); обмотка возбуждения (ОВ); обмотка считывания (ОС).

На ОВ по цепи запроса подаются дву-полярные импульсы тока (обычно амплитудой 0, 5 а и длительностью 3-5 мксек). Если ток в ОУ отсутствует, то под действием импульсов возбуждения сердечник перемагничивается и в ОС индуцируются импульсы напряжения (амплитудой ок. 0, 2 в), поступающие в оперативное запоминающее устройство автоматической телефонной станции. Если по ОУ протекает постоянный ток, достаточный для намагничивания сердечника до насыщения (обычно от неск. ма до неск. десятков ма), то импульсы в ОС не индуцируются. Ф. Лутов.

ФЕРРОДИНАМИЧЕСКИИ ПРИБОР измерительный, см. в ст. Электродинамический прибор измерительный.

ФЕРРОЗОНД, феррозондовый магнитометр, прибор для измерения и индикации магнитных полей (в основном постоянных или медленно меняющихся) и их градиентов. Действие Ф. основано на изменении магнитного состояния ферромагнетика под воздействием двух магнитных полей разных частот. В простейшем варианте Ф. состоит из стержневого ферромагнитного сердечника и находящихся на нём двух катушек: катушки возбуждения, питаемой переменным током, и измерительной (сигнальной) катушки. В отсутствие измеряемого магнитного поля сердечник под действием переменного магнитного поля, создаваемого током в катушке возбуждения, перемагничивается по симметричному циклу. Изменение магнитного потока, вызванное перемагничиванием сердечника по симметричной кривой, индуцирует в сигнальной катушке эдс, изменяющуюся по гармонич. закону. Если одновременно на сердечник действует измеряемое постоянное или слабо меняющееся магнитное поле, то кривая пере-магничивания изменяет свои размеры и форму и становится несимметричной. При этом изменяется величина и гармонич. состав эдс индукции в сигнальной катушке. В частности, появляются чётные гармонич. составляющие эдс, величина к-рых пропорциональна напряжённости измеряемого поля и к-рые отсутствуют при симметричном цикле перемаг-ничивания.

Как правило, Ф. состоит из двух сердечников с обмотками,. к-рые соединены так, что нечётные гармонич. составляющие практически компенсируются. Гем самым упрощается измерит. аппаратура и повышается чувствительность Ф. Наиболее распространённые феррозондовые установки имеют следующие осн. узлы: генератор переменного тока, питающий обмотку возбуждения, фильтр для нечётных гармонич. составляющих эдс, подключённый на выходе измерит. катушки, усилитель чётных гармоник и выходной измерит. прибор. Ф. обладают очень высокой чувствительностью к магнитному полю (до 10-4 -10-5 а/м).

Ф. применяют для измерения земного магнитного поля и его вариаций (в частности, при поисках полезных ископаемых, создающих локальные аномалии геомагнитного поля); для измерения магнитных полей Луны, планет, межпланетного пространства; для обнаружения ферромагнитных предметов и частиц в неферромагнитной среде (в частности, в хирургии); в системах контроля за качеством выпускаемой продукции (магнитная дефектоскопия и др.).

Схема феррода: ФС - ферритовый стержень; ОУ - обмотка управления (знаками + и - обозначены клеммы, к которым подключается источник постоянного тока); ОВ - обмотка возбуждения; ОС - обмотка считывания; К - эквивалентная цепь с контактом, состояние которого (замкнут либо разомкнут) условно отображает состояние, например, абонентской линии (занята либо свободна); 1В - двуполярные импульсы тока возбуждения.

Лит.: Афанасьев Ю. В., Феррозонды, Л., 1969; Афанасьев Ю. В., Студенцов Н. В., Щелкин А. П., Магнитометрические преобразователи, приборы, установки, Л., 1972; Кифер И. И., Испытания ферромагнитных материалов, 3 изд., М., 1969; Чечурина Е. Н., Приборы для измерения магнитных величин, М., 1969.

И, И. Кифер.

ФЕРРОЗОНДОВАЯ ДЕФЕКТОСКОПИЯ, метод магнитной дефектоскопии, при к-ром измерение искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов, осуществляется феррозондами. Ф. д. применяется для обнаружения внутр. дефектов (на глубине до 10, иногда 20 мм) обычно в изделиях правильной формы.

ФЕРРОМАГНЕТИЗМ, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1) устанавливается при темп-pax Т ниже критической О(см. Кюри точка) и обусловлена положит. значением энергии межэлектронного обменного взаимодействия (см. Магнетизм). Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная стриктура - коллине-арная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии. Вещества, в к-рых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками. Магнитная восприимчивость хферромагнетиков положительна (х> 0) и достигает значений 104-105 гс/э; их намагниченность J (или индукция В = - Н + 4пJ) растёт с увеличением напряжённости магнитного поля Н нелинейно (рис. 2) и в полях 1-100 э достигает предельного значения J, - магнитного насыщения. Значение J зависит также от " магнитной предыстории" образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис).

Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3) - различие магнитных свойств по разным кристаллографич. направлениям. В поликристаллах с хаотич. распределением ориентации кристаллич. зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентации она может наблюдаться (магнитная текстура).

Магнитные и другие физич. свойства ферромагнетиков обладают специфич. зависимостью от темп-ры Т. Намагниченность насыщения JS имеет наибольшее значение при Т = 0 К и монотонно уменьшается до нуля при Т = 0 (рис. 4).

Выше О ферромагнетик переходит в парамагнитное состояние (см. Парамагнетизм), а в нек-рых случаях (редкоземельные металлы) - в антиферромагнитное. При Н = 0 этот переход, как правило, является фазовым переходом 2-го рода. Температурный ход магнитной проницаемости м (или восприимчивости х) ферромагнетиков имеет явно выраженный максимум вблизи 0. При Т > О восприимчивость х обычно следует Кюри - Вейса закону. При намагничивании ферромагнетиков изменяются их размеры и форма (см. Магнитострикция). Поэтому кривые намагничивания и петли гистерезиса зависят от внеш. напряжений. Наблюдаются также аномалии в величине и температурной зависимости упругих постоянных, коэффициентов линейного и объёмного расширения. При адиабатич. намагничивании и размагничивании ферромагнетики изменяют свою темп-ру (см. Магнитное охлаждение). Специфические особенности немагнитных свойств ферромагнетиков наиболее ярко проявляются вблизи Т = 0.

Поскольку самопроизвольная намагниченность ферромагнетиков сохраняется до Т = О, а в типичных ферромагнетиках темп-ра О может достигать ~ 103К, то k О = 10-13 эрг (k - Больцмана постоянная). Это означает, что энергия взаимодействия, к-рая ответственна за существование ферромагнитного порядка атомных магнитных моментов в кристалле, тоже должна быть порядка 10-13 эрг на каждую пару соседних магнитно-активных атомов. Такое значение энергии может быть обусловлено только электрич. взаимодействием между электронами, ибо энергия магнитного взаимодействия электронов двух соседних атомов ферромагнетика не превышает, как правило, 10-16 эрг, и поэтому может обеспечить темп-ру Кюри лишь ~ 1К (такие ферромагнетики с т. н. диполь-ным магнитным взаимодействием тоже существуют). В общем случае магнитные взаимодействия в ферромагнетиках определяют их магнитную анизотропию. Классич. физика не могла объяснить каким образом электрич. взаимодействие может привести к Ф. Только квантовая механика позволила понять тесную внутр. связь между результирующим магнитным моментом системы электронов и их электростатич. взаимодействием, к-рое принято называть обменным взаимодействием.

Необходимым условием Ф. является наличие постоянных (независящих от Н) магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями). Различают 4 осн. случая:

1) металлич. кристаллы (чистые металлы, сплавы и интерметаллич. соединения) на основе переходных элементов с недостроенными d-слоями (в первую очередь За-слоем у элементов группы железа);

2) металлич. кристаллы на основе переходных элементов с недостроенными f- слоями (редкоземельные элементы с недостроенным 4f-слоем); 3) неметаллич. кристаллич. соединения при наличии хотя бы одного компонента из переходных d- или f-элементов; 4) сильно разбавленные растворы атомов переходных d- или f-металлов в диамагнитной металлич. матрице. Появление в этих четырёх случаях атомного магнитного порядка обусловлено обменным взаимодействием.

В неметаллич. веществах (случай 3) это взаимодействие чаще всего носит косвенный характер, при к-ром магнитный порядок электронов недостроенных d- или f-слоёв в ближайших соседних парамагнитных ионах устанавливается при активном участии электронов внешних замкнутых слоев магнитно-нейтральных ионов (напр., О2-, S2-, Se2- и т. п.), расположенных обычно между магнитно-активными ионами (см. Ферримагнетизм). Как правило, здесь возникает анти ферромагнитный порядок, к-рый приводит либо к компенсированному антиферромагнетизму, если в каждой элементарной ячейке кристалла суммарный магнитный момент всех ионов равен нулю, либо к ферримагнетизму - если этот суммарный момент не равен нулю. Возможны случаи, когда взаимодействие в неметаллич. кристаллах носит ферромагнитный характер (все атомные магнитные моменты параллельны), напр. EuO, Eu2SiO4, CrBr3 и др.

Общим для кристаллов типа 1, 2, 4 является наличие в них системы коллективизированных электронов проводимости. Хотя в этих системах и существуют под-магничивающие обменные взаимодействия, но, как правило, магнитного порядка нет, а имеет место парамагнетизм пау-левского типа, если он сам не подавлен

Рис. 1. Ферромагнитная (кол-линеарная) атомная структура гранецен-трированной кубической решётки ниже точки Кюри 0; стрелками обозначены направления атомных магнитных моментов; JS - вектор суммарной намагниченности.

Рис. 2. Кривая безгистерезисного намагничивания (O Вm) и петля гистерезиса поликристаллического железа. Значению индукции Вт соответствует намагниченность насыщения JS.

Рис. 3. Зависимость намагниченности J от напряжённости магнитного поля Н для трёх главных кристаллографических осей монокристалла железа (тип решётки - объёмно-центрированная кубическая, [100] - ось лёгкого намагничивания).

Рис. 4. Схематическое изображение температурной зависимости намагниченности насыщения JS ферромагнетика, О - точка Кюри.

более сильным диамагнетизмом ионной решётки. Если всё же магнитный порядок возникает, то в случаях 1, 2 и 4 он различен по своему происхождению. Во втором случае магнитно-активные 4f-слои имеют очень малый радиус по сравнению с параметром кристаллич. решётки. Поэтому здесь невозможна прямая обменная связь даже у ближайших соседних ионов. Такая ситуация характерна и для четвёртого случая. В обоих этих случаях обменная связь носит косвенный характер, осуществляют её электроны проводимости. В четвёртом типе ферромагнетиков (в отличие от случаев 1, 2, 3) магнитный порядок не обязательно связан с кристаллич. атомным порядком. Часто эти ферромагнетики представляют собой в магнитном отношении аморфные системы с неупорядоченно распределёнными по кристаллич. решётке ионами, обладающими атомными магнитными моментами (т. н. спиновые стёкла).

Наконец, в кристаллах 1-го типа электроны, принимающие участие в создании атомного магнитного порядка, состоят из бывших 3d- и 4s-электронов изолированных атомов. В отличие от 4f-слоёв редкоземельных ионов, имеющих очень малый радиус, более близкие к периферии 3d-электроны атомов группы Fe испытывают практически полную коллективизацию и совместно с 4s-электронами образуют общую систему электронов проводимости. Однако в отличие от нормальных (непереходных) металлов, эта система в d-металлах обладает гораздо большей плотностью энергетич. уровней, что благоприятствует действию обменных сил и приводит к появлению намагниченного состояния в Fe, Co, Ni и в их многочисл. сплавах.

Конкретные теоретич. расчёты различных свойств ферромагнетиков проводятся как в квазиклассич. феноменологическом приближении, так и с помощью более строгих квантовомеханич. атомных моделей. В первом случае обменное взаимодействие, приводящее к Ф., учитывается введением эффективного молекулярного поля (Б. Л. Розинг, 1897; П. Вейс, 1907), энергия U к-рого квадратично зависит от J:

U=-NA(JS/JSO)2,

где N - число магнитно-активных атомов в образце, А - постоянная молекулярного поля (А > 0), JSO - намагниченность насыщения при абсолютном нуле темп-ры. Уточнение этой трактовки Ф. дала квантовая механика, раскрыв электрич. обменную природу постоянной А (Я. И. Френкель, В. Гейзенберг, 1928). В частности, при низких темп-рах " 0) удалось провести более точный квантовый расчёт (Ф. Блох, 1930), показавший, что уменьшение самопроизвольной намагниченности JSO ферромагнетика с ростом темп-ры можно в первом приближении описывать как возникновение элементарных магнитных возбуждений - квазичастиц, носящих название спиновых волн или ферромагнонов. Каждый ферромагнон даёт уменьшение JSO на величину магнитного момента одного узла решётки. Число ферромагнонов растёт с нагреванием ферромагнетика пропорционально T3/2, поэтому температурная зависимость JS имеет вид:

JS = JSO(1-аT3/2),

где коэфф. а имеет порядок 10-6

К и зависит от параметра обменного взаимодействия. В отсутствие внешнего магнитного поля = 0) термодинамически устойчивому состоянию макроскопического ферромагнитного образца отвечает размагниченное состояние, ибо в противном случае на поверхности образца, как правило, возникают магнитные полюсы, создающие т. н. размагничивающее поле Нo, с к-рым связана большая положит. энергия. В то же время обменное взаимодействие стремится создать магнитный порядок с J не =0. В результате борьбы этих противоположных тенденций происходит разбиение ферромагнитного образца на домены - области однородной намагниченности. Теория Ф. качественно определяет размеры и форму доменов, к-рые зависят от конкуренции различных взаимодействий в кристалле ферромагнетика (Л. Д. Ландау и Е. М. Лифшиц, 1935). Равновесная структура доменов при J = О отвечает замкнутости магнитных потоков внутри образца. Между доменами существуют переходные слои конечной толщины, в к-рых J, непрерывно меняет своё направление. На образование этих слоев затрачивается положит. энергия, но она меньше энергии поля Но, к-рая возникла бы в отсутствие доменов. При нек-рых критически малых размерах ферромагнитных образцов образование в них нескольких доменов может стать энергетически невыгодным, и тогда такие мелкие ферромагнитные частицы оказываются при Т < 0 однородно намагниченными (т. н. однодоменные частиц ы).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.014 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал