Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вычисление объема тела по известным площадям его параллельных сечений
x
Рассмотрим тело с объемом V. Пусть известна площадь любого поперечного сечения тела Q, выражаемая непрерывной функцией . Разобьем тело на “слои” поперечными сечениями, проходящими через точки разбиения отрезка . На каждом отрезке разбиения функция непрерывна. Следовательно, принимает на нем свои наибольшее и наименьшее значения. Обозначим их соответственно и . Если на этих наибольшем и наименьшем сечениях как на диаметрах построить цилиндры с образующими, параллельными оси , то объемы этих цилиндров будут соответственно равны и , где . Произведя такие построения для всех отрезков разбиения, получим цилиндры, объемы которых равны соответственно и . При стремлении к нулю шага разбиения наибольшего из отрезков разбиения l, эти суммы стремятся к общему пределу: Таким образом, объем тела находится по формуле: Недостатком этой формулы является то, что для нахождения объема необходимо знать функцию , что весьма проблематично для сложных тел. Пример. Найти объем шара радиуса R.
R y -R 0 x R x
В поперечных сечениях шара получаются окружности переменного радиуса у. В зависимости от текущей координаты этот радиус выражается по формуле . Функция площадей сечений имеет вид: . Получаем объем шара: . Пример. Найти объем произвольной пирамиды с высотой Н и площадью основания S. Q S x H x
При пересечении пирамиды плоскостями, перпендикулярными высоте, в сечении получаем фигуры, подобные основанию. Коэффициент подобия этих фигур равен отношению , где х – расстояние от плоскости сечения до вершины пирамиды. Из геометрии известно, что отношение площадей подобных фигур равно коэффициенту подобия в квадрате, т.е. . Отсюда получаем функцию площадей сечений: Находим объем пирамиды: .
|