Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула парабол
(формула Симпсона или квадратурная формула).
Разделим отрезок интегрирования на четное число отрезков . Площадь криволинейной трапеции, ограниченной графиком функции заменим на площадь криволинейной трапеции, ограниченной параболой второй степени с осью симметрии, параллельной оси Оу и проходящей через точки кривой, со значениями , , . Для каждой пары отрезков построим такую параболу.
0 х
Уравнения этих парабол имеют вид , где коэффициенты могут быть легко найдены по трем точкам пересечения параболы с исходной кривой. (6.1) Обозначим . . Если принять , то (6.2) Тогда уравнения значений функции (6.1) имеют вид: C учетом этого: . Отсюда уравнение (6.2) примет вид: . Тогда Складывая эти выражения, получаем формулу Симпсона: . Чем больше взять число , тем более точное значение интеграла будет получено.
Пример. Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. По формуле Симпсона получим:
Точное значение этого интеграла – 91.173. Как видно, даже при сравнительно большом шаге разбиения точность полученного результата вполне удовлетворительная. Для сравнения применим к этой же задаче формулу трапеций. Формула трапеций дала менее точный результат по сравнению с формулой Симпсона. Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подынтегральной функции в степенной ряд. Принцип этого метода состоит в том, чтобы заменить подынтегральную функцию по формуле Тейлора и почленно проинтегрировать полученную сумму. Пример. С точностью до 0, 001 вычислить интеграл . Так как интегрирование производится в окрестности точки , то можно воспользоваться для разложения подынтегральной функции формулой Маклорена. Разложение функции имеет вид: . Зная разложение функции легко найти функцию : . Теперь представим в виде ряда подынтегральное выражение: . Теперь представим наш интеграл в виде: . Применим теорему о почленном интегрировании ряда. (Т.е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда). Вообще говоря, со строго теоретической точки зрения для применения этой теоремы надо доказать, что ряд сходится равномерно на отрезке интегрирования . Таким образом Получаем: Как видно, абсолютная величина членов ряда очень быстро уменьшается, и требуемая точность достигается уже при третьем члене разложения. Более точное значение этого интеграла: 0, 2482725418… 5.3 Геометрические приложения определённого интеграла
|