Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теоремы Абеля
Теорема. (Первая теорема Абеля) Если степенной ряд сходится при , то он сходится и притом абсолютно для всех . Доказательство. По условию теоремы, так как члены ряда ограничены, то где k - некоторое постоянное число. Справедливо следующее неравенство: Из этого неравенства следует, что при численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд. На основании признака сравнения делаем вывод, что ряд сходится, а значит ряд сходится абсолютно. Таким образом, если степенной ряд сходится в точке , то он абсолютно сходится в любой точке интервала длины с центром в точке . Следствие. Если при ряд расходится, то он расходится для всех . Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что ряд абсолютно сходится, а при всех ряд расходится. При этом число R называется радиусом сходимости. Интервал называется интервалом сходимости. Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым. Радиус сходимости может быть найден по формуле: . Пример. Найти область сходимости ряда Находим радиус сходимости . Следовательно, данный ряд сходится при любом значении х. Общий член этого ряда стремится к нулю: Теорема. (Вторая теорема Абеля) Если степенной ряд сходится для положительного значения , то он сходится равномерно в любом промежутке внутри .
|