Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свойства определителей






1°. Определитель матрицы А равен определителю транспонированной матрицы , т. е.

det A = det .

2°. Если хотя бы одна строка матрицы А состоит из нулей, то определитель этой матрицы равен нулю.

3°. При перестановке (транспозиции) любых двух строк в матрице, у определителя этой матрицы изменится знак.

4°. Определитель матрицы, содержащей две одинаковые строки, равен нулю.

5°. Если все элементы некоторой строки матрицы умножить на действительное число , то определитель этой матрицы умножится на .

6°. Пусть матрицы А, В, С отличаются друг от друга только k -й строкой, причем элементы k -й строки матрицы С равны сумме соответствующих элементов k -х строк матриц А и В т.е.

тогда

7°. Определитель матрицы не изменится, если к элементам какой-либо строки прибавить соответствующие элементы другой строки, умноженные на число .

8°. (Теорема аннулирования). Сумма произведений элементов, какой либо строки на алгебраические дополнения соответствующих элементов другой строки равна нулю, т.е.

(1.7)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал