Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула Симпсона
Для построения формулы Симпсона предварительно рассмотрим такую задачу: вычислить площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = Ax2 + Bx + C, слева прямой х = - h, справа прямой x = h и снизу отрезком [-h; h]. Пусть парабола проходит через три точки (рис.8): D(-h; y0) E(0; y1) и F(h; y2), причем х2 - х1 = х1 - х0 = h. Следовательно, x1 = x0 + h = 0; x2 = x0 + 2h. Тогда площадь S равна интегралу: . (3) Выразим эту площадь через h, y0, y1 и y2. Для этого вычислим коэффициенты параболы А, В, С. Из условия, что парабола проходит через точки D, E и F, имеем:
Рис. 4.
Решая эту систему, получаем: C = y1; A = Подставляя эти значения А и С в (3), получаем искомую площадь
(4) Перейдем теперь к выводу формулы Симпсона для вычисления интеграла Для этого отрезок интегрирования [a; b] разобьем на 2n равных частей длиной В точках деления (рис.4).а = х0, х1, х2,..., х2n-2, x2n-1, x2n = b, Вчисляем значения подынтегральной функции f: y0, y1, y2,..., y2n-2, y2n-1, y2n, де yi = f(xi), xi = a + ih (i = 0, 1, 2,..., 2n). На отрезке [x0; x2] подынтегральную функцию заменяем параболой, проходящей через точки (x0; y0), (x1; y1) и (x2; y2), и для вычисления приближенного значения интеграла от х0 до х2 воспользуемся формулой (4). Тогда (на рис. 4 заштрихованная площадь):
Аналогично находим:
................................................
Рис. 5.
Сложив полученные равенства, имеем:
Или (5) Формула (5) называется обобщенной формулой Симпсона или формулой парабол, так как при ее выводе график подынтегральной функции на частичном отрезке длины 2h заменяется дугой параболы. Задание на работу:
1. По указанию преподавателя или в соответствии с вариантом из Таблицы 4 заданий (см. Приложение) взять условия – подынтегральную функцию, пределы интегрирования. 2. Составить блок-схему программы и программу, которая должна: - запросить точность вычисления определенного интеграла, нижний и верхний пределы интегрирования; - вычислить заданный интеграл методами: для вариантов 1, 4, 7, 10… - правых, для вариантов 2, 5, 8, … - средних; для вариантов 2, 5, 8, … - левых прямоугольников. Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления; - вычислить заданный интеграл методом трапеций (для четных вариантов) и методом Симпсона (для нечетных вариантов). - вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления; - вывести значения контрольной функции для заданного значения аргумента и сравнить с вычисленными значениями интеграла. Сделать выводы.
Содержание отчета: титульный лист, тема и цель работы, № варианта задания и собственно задание, описание методов численного интегрирования, математическая постановка задачи, блок-схема алгоритма, текст программы и результаты её работы. Работу программы студент обязан показать на ПЭВМ. Сделать выводы.
Контрольные вопросы
1. Что такое определенный интеграл? 2. Почему наряду с аналитическими методами используются численные методы вычисления определенных интегралов. 3. В чем заключается сущность основных численных методов вычисления определенных интегралов. 4. Влияние количества разбиений на точность вычисления определенного интеграла численными методами. 5. Как вычислить интеграл любым методом с заданной точностью?
|