Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Особенности зависимости
Функциональная зависимость всегда выражается формулами, что в большей степени присуще точным наукам (математике, физике) С одинаковой силой проявляется у всех единиц совокупности, является полной и точной, так как обычно известен перечень всех факторов и механизм их воздействия на переменную в виде уравнения. Корреляционная зависимость включает в себя разнообразие факторов. Их взаимосвязи и противоречивые действия вызывают широкое варьирование переменной у. Корреляционная связь обнаруживается не в единичных случаях, а в массе и требует для своего исследования массовых наблюдений Связь между переменными x и у неполная и проявляется лишь в средних величинах Корреляционная связь в зависимости от направления действия бывает прямая и обратная. Ø Прямая корреляционная связь заключается в том, что сувеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) результативного признака. Ø Обратная корреляционная связь заключается в том, что с увеличением (уменьшением) значений факторного признака происходит уменьшение (увеличение) результативного признака По аналитическому выражению зависимость может быть прямолинейной (линейной) и криволинейной (нелинейной). Ø прямолинейная зависимость: с возрастанием величины факторного признака происходит равномерное возрастание (или убывание) величин результативного признака (выражаются уравнением прямой линии). Ø нелинейная (криволинейная) зависимость: с возрастанием величины факторного признака возрастание (или убывание) результативного признака происходит неравномерно (выражаются уравнениями кривых линий). В зависимости от количества признаков, включенных в модель, корреляционные связи делят на однофакторные и многофакторные. Ø Однофакторные (парные) - с вязь между одним признаком-фактором и результативным признаком (при абстрагировании влияния других) Ø Многофакторные (множественные) - связь между несколькими факторными признаками и результативным признаком (факторы действуют комплексно, т.е. одновременно и во взаимосвязи). Корреляционная зависимость исследуется с помощью методов корреляционного и регрессионного анализа. Наиболее разработанной в эконометрике является методология парной линейной корреляции, рассматривающая влияние вариации переменной х на переменную у и представляющая собой однофакторный корреляционный и регрессионный анализ. Корреляционный анализ - раздел математической статистики, посвященный изучению взаимосвязей между случайными величинами. Применяется тогда, когда данные наблюдений можно считать случайными и выбранными из генеральной совокупности, распределенной по многомерному нормальному закону Корреляционный анализ заключается в количественном определении тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи) Корреляция - статистическая зависимость между случайными величинами, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой. Варианты корреляции Ø Парная корреляция - связь между двумя признаками (результативным и факторным или двумя факторными) Ø Частная корреляция- зависимость между результативным и одним факторным признаками или двумя факторными признаками при фиксированном значении других факторных признаков. Ø Множественная корреляция - зависимость между результативным признаком и двумя и более факторными признаками, включенными в исследование
|