Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задание на работу
Мебельная фабрика выпускает два вида изделий: шкафы и столы. В производстве применяется оборудование трех типов: фрезерные, сверлильные и шлифовальные станки. Нормы времени работы каждого вида оборудования в час, необходимые для изготовления одного изделия каждого вида, а также ресурсы рабочего времени для каждого вида оборудования, известны и приведены в табл. 1.1. Т а б л и ц а 1.1
Фабрика получает прибыль от изготовления и реализации одного шкафа в размере ден.ед. и одного стола – в размере ден.ед. Цена за простой 1 часа оборудования составляет ден.ед., . Эти данные содержатся в таблице. Требуется определить план выпуска изделий каждого вида, при котором время работы оборудования не превышало бы допустимого фонда времени, и при этом · во-первых, была получена наибольшая общая прибыль; · во-вторых, был получен минимальный штраф за простой оборудования; · в третьих, была получена наибольшая общая прибыль с учетом штрафа за простой оборудования. Для решения задачи необходимо выполнить следующие пункты: 1. Составить математическую модель задачи при условии, что критерием оптимальности является максимальная прибыль от изготовления и реализации продукции. Решить полученную задачу линейного программирования графически и с помощью процедуры «Поиск решения» программного средства Excel. 2. Составить математическую модель при условии, что критерием оптимальности является минимальный штраф за простой оборудования. Решить задачу в Excel. 3. Составить математическую модель при условии, что критерием оптимальности является максимум общей прибыли за вычетом штрафа за простой оборудования. Решить задачу в Excel. 4. Показать соответствие оптимальных планов с вершинами допустимой области.
|