Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Графическое решение задачи максимизации приыли






На рис. 1.1 приведено графическое решение задачи по критерию (1.5). На основе системы ограничений (1.3)–(1.4) строится допустимая область в виде многоугольника OABCD. Покажем, например, как построена прямая I. В уравнении положим , тогда получим . Затем положим , тогда . Через две точки проведем прямую I. Неравенство определяет полуплоскость, расположенную ниже этой прямой. Аналогично неравенство задает полуплоскость, расположенную под прямой II, а неравенство – полуплоскость, расположенную левее прямой III. Условия неотрицательности (1.4) в совокупности определяют первый квадрант координатной плоскости.

Оптимальное решение задачи по первому критерию определяется следующим образом. Строится вектор , координаты которого равны (или пропорциональны) коэффициентам целевой функции (1.5). Перпендикулярно этому вектору изображается прямая (линия уровня целевой функции), которая перемещается в направлении вектора, пока прямая имеет общие точки с допустимой областью. Оптимальное решение по первому критерию есть точка пересечения допустимой области с линией уровня, отвечающей максимальному значению . Это есть вершина . Координаты точки определяются по графику приближенно. Они дают оптимальное решение задачи по первому критерию.

Рис. 1.1. Графическое решение задачи по первому критерию

 

Таким образом, выпуск продукции в количествах 36 и 21 ед. соответственно обеспечивает предприятию максимальную общую прибыль. Построение допустимой области можно выполнить в Excel. Для этого в соответствии с уравнениями системы (1.3) образуем табл. 1.3. В блок ячеек A3: A14 введем значения аргумента , изменяющегося от нуля до .

Т а б л и ц а 1.3

 

  A B C D  
 
  Прямая I Прямая II Прямая III
    54, 43      
    45, 14 38, 9    
    35, 86 34, 8    
    26, 57 30, 7 52, 5  
    17, 29 26, 6    
      22, 5 –53  
    –1, 29 18, 5 –105  
    –10, 6 14, 4 –158  
    –19, 9 10, 3 –210  
    –29, 1 6, 18 –263  
    –38, 4 2, 09 –315  
    –47, 7 –2 –368  

 

В ячейки B3, C3 и D3 введем формулы из табл. 1.4, которые копируются на блок ячеек B4: D14.

Т а б л и ц а 1.4

 

B3 = (762 – 13 * A3) / 14
C3 = (946 – 9 * A3) / 22
D3 = (840 – 21 * A3) / 4

 

С помощью мастера диаграмм и блока ячеек B3: D14 из табл. 1.3 строятся графики прямых линий I, II и III. Используя пункт меню «Ряд» и «Подписи оси x», указывают значения аргумента , содержащиеся в блоке ячеек A3: A14. После построения прямых следует выделить допустимую область, ограничив диаграмму снизу и сверху по вертикальной оси. Путем изменения размеров графика необходимо добиться, чтобы масштаб по осям координат был одинаковым. Подписи данных удобно сделать, используя пункт меню «Вид / Панели инструментов / Рисование».

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал