Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Математическая модель максимизации прибыли
Фактическая загрузка по каждой группе оборудования равна: – для строгальных станков, – для фрезерных станков, – для шлифовальных станков. Коэффициенты при неизвестных обозначают здесь нормы затрат машинного времени на обработку одного шкафа и одного стола. Загрузка по каждой группе оборудования не должна превышать фонда машинного времени, т.е.: . (1.3) Неизвестные, очевидно, должны быть неотрицательными: , . (1.4) Неравенства (1.3) и (1.4) образуют систему ограничений. Общая прибыль от реализации готовой продукции (цель 1) выражается формулой . (1.5) Таким образом, математическая модель задачи по критерию максимальной прибыли состоит в определении чисел и , удовлетворяющих системе ограничений (1.3)-(1.4), для которых значение функции (1.5) будет максимальным. Это есть задача линейной оптимизации.
|