Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основные хар-ки генеральной и выборочной совокупностей.
Пусть генеральная совокупность имеет распределение
-частоты. -объём генеральной совокупности. -объём выборки. Генеральная средняя . Выборочная средняя . . Генеральная дисперсия , . Выборочная дисперсия . Генеральная доля(отношение числа объекта e совокупности, обладающей данным признаком к числу всех объектов) - . Выборочная доля - .
46. Оценка параметров распределения. Несмещённость, состоятельность, эффективность оценок. Точечные и интервальные оценки. Оценкой параметра называется любая функция от значений выборки , т.е. статистика. Оценка является несмещённой, если Если для любого то оценка называется состоятельной. Оценкой качества несмещенной оценки является ее дисперсия. Несмещенная оценка называется эффективной, если ее дисперсия является наименьшей среди дисперсий всех возможных оценок параметра , вычисленных по одному и тому же объему выборки п. Оценки называются точечными, так как они оценивают одно численное значение параметра (точку). Точечная оценка параметра дает лишь некоторое приближенное значение . Чтобы получить представление о точности и надежности оценки, используют интервальную оценку параметра. Интервальной оценкой параметра называется интервал (α, β), который с заданной вероятностью γ накрывает неизвестное значение параметра . Такой интервал (α, β) называется доверительным интервалом, а вероятность γ — доверительной вероятностью, или уровнем надежности. Обычно доверительный интервал симметричен относительно оценки , тогда он определяется формулой и имеет вид т.е. неравенства выполняется с вероятностью γ. Наибольшее отклонение Δ выборочного значения параметра от его истинного значения называется предельной ошибкой выборки.
|