Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные хар-ки генеральной и выборочной совокупностей.






Пусть генеральная совокупность имеет распределение

….
….

-частоты. -объём генеральной совокупности.

-объём выборки. Генеральная средняя . Выборочная средняя . . Генеральная дисперсия , . Выборочная дисперсия . Генеральная доля(отношение числа объекта e совокупности, обладающей данным признаком к числу всех объектов) - . Выборочная доля - .

 

 

46. Оценка параметров распределения. Несмещённость, состоятельность, эффективность оценок. Точечные и интервальные оценки.

Оценкой параметра называется любая функция от значе­ний выборки , т.е. статистика. Оценка является несмещённой, если Если для любого то оценка называется состоятельной. Оценкой качества несмещенной оценки является ее диспер­сия. Несмещенная оценка называется эффективной, если ее дисперсия является наименьшей среди дисперсий всех возможных оценок параметра , вычисленных по одному и тому же объему выбор­ки п. Оценки называются точечными, так как они оценивают одно численное значение параметра (точку). Точечная оценка параметра дает лишь некоторое при­ближенное значение . Чтобы получить представление о точно­сти и надежности оценки, используют интервальную оценку параметра.

Интервальной оценкой параметра называется интервал (α, β), который с заданной вероятностью γ накрывает неизвест­ное значение параметра . Такой интервал (α, β) называется доверительным интерва­лом, а вероятность γ — доверительной вероятностью, или уровнем надежности. Обычно доверительный интервал симметричен относительно оценки , тогда он определяется фор­мулой

и имеет вид т.е. неравенства выполняется с вероятностью γ. Наибольшее отклонение Δ выборочного значения параметра от его истинного значения называется предельной ошибкой вы­борки.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал