Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Определение 1.7.
Эмпирической функцией распределения называется случайная функция : , где функция равна количеству случайных величин выборки меньших .
Теорема (сходимость по вероятности) Пусть является эмпирической функцией распределения, построенной по выборке из распределения , тогда при всяком фиксированном случайная величина сходится по вероятности к при : , при . Теорема (равномерная сходимость по вероятности) Пусть является эмпирической функцией распределения, построенной по выборке из распределения , тогда последовательность случайных величин сходится к нулю по вероятности при : , при . Теорема (Гливенко, сходимость с вероятностью 1) Пусть является эмпирической функцией распределения, построенной по выборке из распределения , тогда последовательность случайных величин сходится к нулю с вероятностью 1 («почти наверное») при : , при .
Задача точечного оценивания неизвестных величин: параметров, вероятностей и моментов. Понятие статистики и оценки, свойства оценок: несмещенность и состоятельность. Сравнение несмещенных оценок на основе дисперсий. Понятие об оптимальной оценке, утверждение о единственности оптимальной несмещенной оценки (без доказательства). Обобщение критерия сравнения оценок на основе дисперсий с использованием среднеквадратичного отклонения, функции потерь и функции условного риска.
|