Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Геометрическая сторона задачи.
Установим зависимость между перемещениями узлов i, j и абсолютными деформациями стрежня k. Введем базовый вектор абсолютной деформации: Где - деформация, соответствующая продольной силе Ni (удлинение); - деформация, соответствующая поперечной силе Qi (сдвиг); – деформация, соответствующая изгибающему моменту Mi (поворот). Базовый вектор перемещений узлов обозначим: Где - перемещения узлов по оси х, - перемещения узлов по оси y, и - углы поворота узлов. Если известны перемещения узлов, то через них можно выразить деформации. Эти геометрические соотношения более сложны при выводе, чем статические уравнения. В векторной форме эту зависимость можно представить по аналогии с зависимостью (1): т.е. - некоторая матрица преобразования. Чтобы более просто установить вид этой матрицы, воспользуемся принципом Лагранжа: если механическая система находится в равновесии, то сумма работ внешних и внутренних сил равна нулю. В качестве возможных можно принимать действительные перемещения, если они достаточно малы. Работа внешних сил совершается на перемещениях узлов, а работа внутренних усилий – на абсолютных деформациях. Работа внутренних сил на действительных деформациях всегда отрицательна, поэтому можно записать, учитывая, что стержень рассматривается в положении равновесия:
д Подставляя в равенство формулы (1) и (2), получаем: . Так как слева и справа стоят одинаковые вектора, то или
Таким образом,
|