Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Смежный метод.






 

При выборе метода решения статически и кинематически неопределимых рам необходимо сравнить между собой число неизвестных по двум основным методам: сил и перемещений. Анализируя различные схемы рам, можно сделать общий вывод, что, если конструкция имеет малое количество лишних связей и большую линейную податливость, то выгодным является метод сил, а если конструкция имеет большое количество лишних связей и малую линейную податливость, то преимущество переходит к методу перемещений.

 

 


Р Р

а) б)

 

 


nл=3*6-2*8=2 nл=3*4-2*5-2=0

1 1

2 2 3

1 1 1

 

Для схемы (а) выгоден метод сил:

Для схемы (б) выгоден метод перемещений.

nст=3*3-0-2*2=5;

nk=1+0=1.

Встречаются конструкции, когда одна их часть имеет большое число лишних связей и малую податливость, а другая их часть, наоборот, имеет малое количество лишних связей и большую податливость. Для таких конструкций оказывается выгодным смешанный метод решения, когда в малоподатливой части за неизвестные принимают перемещения (углы поворота) Zi, а в сильно податливой части неизвестные принимают усилия Xj.

 

 


х2
х2 х1

х1

q
q
Р

Р

Z3 Z4

 

Заданная система Эквивалентная система смешанного метода

 


nст=3*3-2=7 nл=3*8-2*11=2

nk=4+2=6

nст-k=2+2=4

 

Первый этап рамы выгодно решать методом перемещений, а второй этап рамы – методом сил. Покажем эквивалентную систему смешанного метода где введены две виртуальные заделки в жесткие узлы и удалены две реальные связи в шарнирном узле. Таким образом при смешанном методе решения nст-k< .

Система канонических уравнений смешанного метода запишется для данной рамы в следующем виде:

Здесь – перемещения по направлению отброшенных связей i, вызванные единичными силами - перемещения по направлению отброшенных связей i, вызванные единичными перемещениями виртуальных связей - реакции во введенных связях i, вызванные единичными перемещениями виртуальных связей - реакции во введенных связях i, вызванные действием единичных сил по направлению отброшенных связей - перемещения по направлению отброшенных связей i от действия нагрузки - реакции во введенных связях от действия внешней нагрузки .

Податливости и реакции находят обычными приемами метода сил и метода перемещений. Реакции находят из единичных схем нагружения силами . Перемещения находят по теореме о взаимности реакций и перемещений: .

Перемещения и реакции от внешних нагрузок находят обычными приемами двух методов.

После решения системы канонических уравнений относительно , строят окончательную эпюру изгибающих моментов:

, где – единичные эпюры моментов в основной системе от действия или , - грузовая эпюра моментов в основной системе от действия внешней нагрузки .

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал