Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формулы трапеций и Симпсона
Воспользуемся правилом Верещагина для перемножения двух прямолинейных эпюр, имеющих вид трапеций. Разобьем обе трапеции на треугольники, у которых площади и положения центров тяжести легко определяются.
Эпюра MF
ω 1 C1 C2
Мы получили формулу трапеций, согласно которой произведения соответствующих левых и правых ординат эпюр необходимо удвоить, а произведения перекрестных ординат взять одинарными, и полученную сумму умножить на одну шестую длины эпюр. Рассмотрим случай, когда грузовая эпюра представлена квадратной параболой, а единичная эпюра – трапецией.
ω T
Выражение IТ у нас имеется. Найдем . Площадь параболического сегмента:
Ордината единичной эпюры под центром тяжести параболического сегмента:
После подстановки получаем формулу Симпсона: Произведение двух эпюр равно сумме произведений крайних ординат и учетверенному произведению средних ординат, умноженной на одну шестую длины эпюр.
|