Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Теорема о потенциальной энергии внутренних сил упругости
Потенциальная энергия есть суммарная интегральная квадратичная функция внутренних усилий, возникающих во всех сечениях элементов сооружения при его нагружении.
Для пространственных конструкций она имеет следующее выражение: 1 слагаемое учитывает растяжение-сжатие; 2 и 3 слагаемые учитывают сдвиг; 4 и 5 слагаемые учитывают изгиб; 6 слагаемое учитывает кручение. Для плоских стержневых систем: Для плоских рам, стержни которых работают преимущественно на изгиб:
Докажем последнюю формулу. Выделим из стержня (балки), подверженного чистому изгибу, элемент бесконечно малой длины и рассмотрим схему его деформации, вызванной действием изгибающих моментов, переведенных в разряд внешних сил.
dθ
M M
dz Примем оба момента М за обобщенную силу, а взаимный элементарный угол поворота смежных сечений за обобщенное перемещение. Тогда, согласно теореме Клапейрона, элементарная работа будет равна: . Воспользуемся дифференциальным уравнением изогнутой оси балки: Преобразуем его, учитывая что . Подставляя в элементарную работу, получаем: Интегрируя по всей длине стержня, находим: Согласно закону сохранения энергии работа, совершаемая внешними силами, с небольшими потерями (порядка 0, 01%) на нагрев и другие эффекты переходит в потенциальную энергию внутренних сил упругости. Эта энергия, накаливаясь в элементах сооружения, обеспечивает его равновесное состояние при воздействии нагрузок и возвращает в исходное состояние после снятия нагрузок. Произведем суммирование по всем m стержням сооружения и учтем, что U=W. Тогда получаем: Мы видим, что изгибающий момент стоит под знаком интеграла во второй степени и, следовательно, потенциальная энергия внутренних сил упругости есть интегральная квадратичная функция внутреннего усилия. В силу этого к потенциальной энергии не применим принцип суперпозиции, т.е. если обозначать энергию, создаваемую при действии силы F1 через U1, создаваемую при действии силы F2 через U2, создаваемую при действии обеих сил через U, то , в общем случае UΣ .
|