Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формулировка критерия Михайлова
Автоматическая система управления, описываемая уравнением п-го порядка будет устойчивой, если при изменении частоты от 0 до ¥ характеристический вектор системы (годограф Михайлова) повернется против часовой стрелки на угол , не обращаясь при этом в нуль. На рисунке а) изображен вектор D(jw), называемый характеристической кривой или годографом Михайлова. Характеристические кривые, соответствующие устойчивым системам (рисунок б)), имеют плавную спиралеобразную форму и уходят в бесконечность в том квадранте, номер которого равен порядку уравнения. Если характеристическая кривая проходит п квадрантов не последовательно или проходит меньшее число квадрантов, то система неустойчива (рисунок в)). В практических расчетах удобно применять следствие из критерия Михайлова: Система устойчива, если действительная и мнимая части характеристической функции D(jw) обращаются в нуль поочередно (см. рисунок г)), т.е. если корни уравнений Re(w)=0 и Im(w)=0 перемежаются и Re(0) > 0 и Im¢ (0) > 0. Следствие из критерия Михайлова позволяет установить устойчивость системы невысокого порядка аналитически, без построения годографа.
|