Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Статистические средние характеристики случайных процессов






Конечномерные распределения дают исчерпывающую характеристику случайного процесса. Однако во многих случаях представляют интерес более сжатые характеристики распределения, отражающие основные свойства случайного процесса. Роль таких характеристик случайных процессов играют моментные функции или статистические средние.

Средним значением случайного процесса x(t) (статистическим средним) m x(t) называется математическое ожидание сечения случайного процесса в момент времени t и обозначается

.

Дисперсией случайного процесса x(t) называется дисперсия сечения случайного процесса в момент времени t

.

Математическое ожидание и дисперсия определяются одномерной функцией распределения F x(x, t) и в общем случае зависят от t.

Функцией корреляции случайного процесса x(t) называется математическое ожидание произведения сечений случайного процесса в моменты времени t 1 и t 2.

.

Она определяется двумерной функцией распределения F (x1, t1; x2, t2) и в общем случае зависит от двух аргументов – t 1 и t 2. Эту функцию R x(t1, t2) называют также функцией автокорреляции.

Функцией ковариации случайного процесса x(t) называется математическое ожидание произведения центрированных сечений случайного процесса в моменты времени t 1 и t 2.

.

Нетрудно показать, что

При t1=t2=t функция ковариации совпадает с дисперсией Dx(t) случайного процесса

.

Величину

называют коэффициентом корреляции случайного процесса или нормированной функцией ковариации. В общем случае коэффициент корреляции является мерой линейной зависимости двух сечений x(t1) и x(t2) случайного процесса, то есть он показывает с какой точностью одна из случайных величин x(t1) может быть линейно выражена через другую и x(t2).

Для двух случайных процессов x(t) и h(t) вводится понятие взаимной функции корреляции или функции кросс-корреляции

.

Совместная корреляционная функция двух случайных процессов x(t) и h(t) определяется как матричная функция

,

все элементы которой определены выше.

Пример 1.5. Пусть случайный процесс, определяется соотношением x(t)=(U+V)/t, где U и V –независимые случайные величины, имеющие гауссовское распределение N(0; 1/2). Найти математическое ожидание и дисперсию случайного процесса x(t) и вероятность P{|x(t)|< 3/t} для произвольного t> 0.

Решение. В силу того, что U и V гауссовские и независимые,

,

.

Так как сумма гауссовских случайных величин (U+V) имеет гауссовское распределение с параметрами a =0, s2=1, то

,

где F(z) – функция Лапласа

.

Тогда искомая вероятность определяется следующим образом

.

Пример 1.6. Пусть случайный процесс x(t)=j(t)V, tÎ T, где V – некоторая случайная величина, с математическим ожиданием mV и дисперсией DV, а j(t) – неслучайная функция. Найти математическое ожидание mx(t), дисперсию Dx(t) и функцию корреляции случайного процесса Rx(t1, t2).

Решение. Согласно определениям имеем

,

,

,

.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал