Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение. В соответствии с алгоритмом, на следующем шаге нужно выделять слагаемые, содержащие переменную , но коэффициент при в правой части формулы обратился в нуль
В соответствии с алгоритмом, на следующем шаге нужно выделять слагаемые, содержащие переменную , но коэффициент при в правой части формулы обратился в нуль. Поэтому — в соответствии с пунктом 2 метода — приходится выделять квадрат на основе переменной : Ответ. . П Пример. Привести форму к каноническому виду. Решение. Коэффициенты при квадратах переменных все равны нулю. Действуем в соответствии с пунктом 3 метода Лагранжа. Поскольку коэффициент при отличен от нуля, делаем замену переменной при : Дальнейший ход решения — в соответствии с пунктом 1 метода Лагранжа: Получили сумму квадратов форм от переменных . Возвращаемся к переменной : Ответ. . § Метод Лагранжа позволяет получить канонический вид квадратичной формы над тем же множеством , над которым рассматривается исходная форма — например, если коэффициенты формы являются рациональными, то и коэффициенты ее канонического вида (т.е. числа ) будут также рациональными.
|